Carbon dating has<span> given archeologists a more accurate method by which they </span>can<span> determine the age of ancient artifacts. The </span>halflife<span> of </span>carbon 14<span> is </span>5730<span> ± 30 </span>years<span>, and the method of dating lies in trying to determine how </span>much carbon 14<span> (</span><span>the radioactive isotope of carbon) is present in the artifact and comparing it to levels</span>
Answer:
I can list four. These are the main ones.
Bolling
Filtration
Distillation.
Chlorination
Explanation:
Answer: It will take 29 years for a 10.0-gram sample of strontium-90 to decay to 5.00 grams
Explanation:
Radioactive decay process is a type of process in which a less stable nuclei decomposes to a stable nuclei by releasing some radiations or particles like alpha, beta particles or gamma-radiations. The radioactive decay follows first order kinetics.
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
Half life is represented by 

= rate constant
Given : Strontium-90 decreases in mass by one-half every 29 years , that is half life of Strontium-90 is 29 years.
As half life is independent of initial concentration, it will take 29 years for a 10.0-gram sample of strontium-90 to decay to 5.00 grams as the amount gets half.
Answer:
The volume of helium at 25.0 °C is 60.3 cm³.
Explanation:
In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:
K = °C + 273.15
The initial and final temperatures are:
T₁ = 25.0 + 273.15 = 298.2 K
T₂ = -196.0 + 273.15 = 77.2 K
The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.

Answer:
do you have any vocabulary to help you with this or no