It depends on the function and activity of both cells. Most normal cells crease division if they came into contact with other cells however the immune system interact directly with pathogens or foreign organisms to destroy them.
Answer:
Q >> Kc
We have more products than reactans. To reach the equilibrium, the balance will shift to the left.
Explanation:
Step 1: Data given
Temperature = 450.0 K
Kc = 4.62
When Kc > Q, we have more reactants than products. To reach the equilibrium, the balance will shift to the right
When Kc < Q, we have more products than reactans. To reach the equilibrium, the balance will shift to the left.
When Kc = Q,the equiation isatequilibrium
[SO3] = 0.254 M
[O2] = 0.00855 M
[SO2] = 0.500 M
Step 2: The balanced equation
2SO2(g) + O2(g) ⇄ 2SO3(g)
Step 3: Calculate the Q
Q = [SO3]² / [O2][SO2]²
Q = 0.254²/ (0.500 * 0.00855²)
Q = 1765
Q >> Kc
We have more products than reactans. To reach the equilibrium, the balance will shift to the left.
Answer:
ΔHr = -86.73 kJ/mol
Explanation:
Using Hess's law, you can calculate ΔH of any reaction using ΔH°f of products and reactants involed in the reaction.
<em>Hess law: ∑nΔH°f products - ∑nΔH°f reactants = ΔHr</em>
<em>-Where n are moles of reaction-</em>
For the reaction:
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)
Hess law is:
ΔHr = ΔH°f Fe(OH)₃ - ΔH°f Fe³⁺ - 3×ΔH°f OH⁻
Where:
ΔH°f Fe(OH)₃: −824.25 kJ/mol
ΔH°f Fe³⁺: −47.7 kJ/mol
ΔH°f OH⁻: −229.94 kJ/mol
Replacing:
ΔHr = −824.25 kJ/mol - (−47.7 kJ/mol) - (3×-229.94 kJ/mol)
<em>ΔHr = -86.73 kJ/mol</em>
The five strategies could include; 1) research the question of clean water availability on line and in books (2 strategies), 2) interview or ask those affected by lack of availability of clean water and find out how it affects them 3) consult with other groups ie political groups also concerned with this question and find out what they did to ensure availability to clean water and lastly to take actions to fight for the accessibility of clean water for certain groups of people like the First Nations people on reserves in Canada.
Ammonification is performed by bacteria to convert organic nitrogen to ammonia.