<span>This is an example of diffusion. The nitrous oxide is moving from an area of higher concentration, down the gradient into the cell, which has a lower concentration. Since the cell doesn't have as much N2O as the surrounding environment, the gas will move inside the cell as a way of attaining equilibrium.</span>
Answer : The final equilibrium temperature of the water and iron is, 537.12 K
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of iron = 560 J/(kg.K)
= specific heat of water = 4186 J/(kg.K)
= mass of iron = 825 g
= mass of water = 40 g
= final temperature of water and iron = ?
= initial temperature of iron = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final equilibrium temperature of the water and iron is, 537.12 K
I can't remember any of the weights of the individual elements but here is how you solve it:
Molecular weight of copper + nitrogen + 3 oxygens = molecular weight of the compound.
M = moles / liter
.350 moles / 1 liter
Do .350 moles / liter x the molecular weight (g / mole) of the compound = the answer in g / L