1 is the number of unpaired electrons in the outer subshell of a Cl atom
Answer:
91.16% has decayed & 8.84% remains
Explanation:
A = A₀e⁻ᵏᵗ => ln(A/A₀) = ln(e⁻ᵏᵗ) => lnA - lnA₀ = -kt => lnA = lnA₀ - kt
Rate Constant (k) = 0.693/half-life = 0.693/10³yrs = 6.93 x 10ˉ⁴yrsˉ¹
Time (t) = 1000yrs
A = fraction of nuclide remaining after 1000yrs
A₀ = original amount of nuclide = 1.00 (= 100%)
lnA = lnA₀ - kt
lnA = ln(1) – (6.93 x 10ˉ⁴yrsˉ¹)(3500yrs) = -2.426
A = eˉ²∙⁴²⁶ = 0.0884 = fraction of nuclide remaining after 3500 years
Amount of nuclide decayed = 1 – 0.0884 = 0.9116 or 91.16% has decayed.
Answer:
Protons are positively charged. The mass is slightly lower than a neutron.The location of a proton is nucleus. The the role of a proton is to help bind the nucleus together.
Explanation:
Answer:
0.0907 M
Explanation:
Before you can calculate the molarity, you need to convert grams to moles (via molar mass) and convert mL to L.
(Step 1)
Molar Mass (C₈H₅O₄K):
8(12.011 g/mol) + 5(1.008 g/mol) + 4(15.998 g/mol) + 39.098 g/mol
Molar Mass (C₈H₅O₄K): 204.218 g/mol
0.6013 g C₈H₅O₄K 1 mole
------------------------------ x ------------------ = 0.00294 moles C₈H₅O₄K
204.218 g
(Step 2)
1,000 mL = 1 L
32.47 mL 1 L
--------------- x ----------------- = 0.03247 L
1,000 mL
(Step 3)
Molarity (M) = moles / volume (L)
Molarity = 0.00294 moles / 0.03247 L
Molarity = 0.0907 M