Answer: True
Explanation:
Entropy is the measure of randomness or disorder of a system. If a system moves from an ordered arrangement to a disordered arrangement, the entropy is said to decrease and vice versa.
is positive when randomness increases and
is negative when randomness decreases.
When the solid changes to liquid to gas ,the randomness of particles increases and hence
is positive and thus the entropy increases.
I cant entirely tell for now but an article on rodioactivity should solve the problem
Answer: -
IE 1 for X = 801
Here X is told to be in the third period.
So n = 3 for X.
For 1st ionization energy the expression is
IE1 = 13.6 x Z ^2 / n^2
Where Z =atomic number.
Thus Z =( n^2 x IE 1 / 13.6)^(1/2)
Z = ( 3^2 x 801 / 13.6 )^ (1/2)
= 23
Number of electrons = Z = 23
Nearest noble gas = Argon
Argon atomic number = 18
Number of extra electrons = 23 – 18 = 5
a) Electronic Configuration= [Ar] 3d34s2
We know that more the value of atomic radii, lower the force of attraction on the electrons by the nucleus and thus lower the first ionization energy.
So more the first ionization energy, less is the atomic radius.
X has more IE1 than Y.
b) So the atomic radius of X is lesser than that of Y.
c) After the first ionization, the atom is no longer electrically neutral. There is an extra proton in the atom.
Due to this the remaining electrons are more strongly pulled inside than before ionization. Hence after ionization, the radii of Y decreases.
Answer:
NH₃ (Option A)
Explanation:
Arrhenius theory explained that the acids are the ones that have H⁺, either H in its formula. Following this, the bases are the ones that have OH⁻ , either OH and its formula.
It can be used only with compounds with H, or OH.
So the ammonia is not a base, as Arrhenius theory.
It is known that ammonia behaves as a weak base, but it does not have hydroxide ions that can yield to water