Answer:
The bonds between the molecules of the plastic bottle become weaker as the altitude decreases.
Answer:
The answer is one
Explanation:
I will just type any rubbish here bcuz my answer should be more than 20 words..... Just know the answer is 1
When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g
Answer:
electrons
Explanation:
By particles im assuming you mean subatomic. The particle with the most energy in this case would be electrons.
In finding the molarity of a solution, we use the following formula:

What is Molarity?
The number of moles of the solute is calculated by dividing the mass of the solute by its molar mass.
<h3 />
The molar mass of NH4NO3 and (NH4)3PO4 are 80.043 g/mol and 149.0867 g/mol, respectively.




![[NH+4]=0.1596 mol20.0 L=7.98×10−3 M NH+4](https://tex.z-dn.net/?f=%5BNH%2B4%5D%3D0.1596%20mol20.0%20L%3D7.98%C3%9710%E2%88%923%20M%20NH%2B4)
![[PO3−4]=0.0296 mol20.0 L=1.48×10−3 M PO3−4](https://tex.z-dn.net/?f=%5BPO3%E2%88%924%5D%3D0.0296%20mol20.0%20L%3D1.48%C3%9710%E2%88%923%20M%20PO3%E2%88%924)
Therefore,
has a molarity of 
To learn more about Molarity click on the link below:
brainly.com/question/19943363
#SPJ4