<em>Answer:</em>
<u>Part A:</u> so that no single branch has to much power
<u>Part B:</u> "Each branch of government must check the actions of the other two branches to prevent one branch from having too much power."
<h3>Hope this helped!!!</h3>
Answer:
x = - 2.5
Step-by-step explanation:
Given that the sketch represents
y = x² + bx + c
The graph crosses the y- axis at (0 , - 14), thus c = - 14
y = x² + bx - 14
Given the graph crosses the x- axis at (2, 0), then
0 = 2² + 2b - 14
0 = 4 + 2b - 14 = 2b - 10 ( add 10 to both sides )
10 = 2b ( divide both sides by 2 )
b = 5
y = x² + 5x - 14 ← represents the graph
let y = 0 , then
x² + 5x - 14 = 0 ← in standard form
(x + 7)(x - 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 7 = 0 ⇒ x = - 7
x - 2 = 0 ⇒ x = 2
The x- intercepts are x = - 7 and x = 2
The vertex lies on the axis of symmetry which is midway between the x- intercepts, thus
the x- coordinate of the turning point is
=
= - 2.5
Prime factorization involves rewriting numbers as products
The HCF and the LCM of 1848, 132 and 462 are 66 and 1848 respectively
<h3>How to determine the HCF</h3>
The numbers are given as: 1848, 132 and 462
Using prime factorization, the numbers can be rewritten as:



The HCF is the product of the highest factors
So, the HCF is:


<h3>How to determine the LCM</h3>
In (a), we have:



So, the LCM is:


Hence, the HCF and the LCM of 1848, 132 and 462 are 66 and 1848 respectively
Read more about prime factorization at:
brainly.com/question/9523814
Answer:
c.) aₙ = 5 × 4ⁿ⁻¹
Explanation:
Geometric sequence: aₙ = a(r)ⁿ⁻¹
where 'a' resembles first term of a sequence, 'r' is the common difference.
Here sequence: 5, 20, 80, 320,...
First term (a) = 5
Common difference (d) = second term ÷ first term = 20 ÷ 5 = 4
Hence putting into equation: aₙ = 5(4)ⁿ⁻¹
To solve -7y > 161, we divide both sides by -7 and we get y < -23. The inequality sign flipped because we divided both sides by a negative number.
To solve 7y > -161, we divide both sides by 7 and it leads to y > -23. The inequality sign does not flip in this case, because we are not dividing both sides by a negative number.
The similarities is that we end up with -23 on the right side, but the inequality signs are different.