1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
3 years ago
15

The goal of the following model is generate a clock waveform that has the clock high 4 time units and low 4 time units, with the

first rising edge at time 20. Submit a completed module which fills in the missing lines in q2 below:
module q2;
reg clock;
initial begin
clock=0
____
____
____
end
end
endmodule
Engineering
1 answer:
DedPeter [7]3 years ago
3 0

Answer:

module q2;

reg clock;

initial begin

clock = 0;

#20 clock = 1; // at 20 set high

always begin

#4 clock = ~clock; // then every four units change

end

end

endmodule

You might be interested in
These tadpoles are confined to a limited environment. What are they all competing for in that environment
Dovator [93]

Answer: to the earth air

Explanation:

5 0
3 years ago
Read 2 more answers
Identify SIX (6) objectives of maintenance.<br>​
Rasek [7]

Answer:

to optimize the reliability of equipment and infrastructure;

- to ensure that equipment and infrastructure are always in good condition;

- to carry out prompt emergency repair of equipment and infrastructure so as to secure the best possible availability for production;

- to enhance, through modifications, extensions, or new low-cost items, the productivity of existing equipment or production capacity;

- to ensure the operation of equipment for production and for the distribution of energy and fluids;

- to improve operational safety;

- to train personnel in specific maintenance skills;

- to advise on the acquisition, installation and operation of machinery;

- to contribute to finished product quality;

- to ensure environmental protection.

Explanation:

pick whichever you want

8 0
3 years ago
What process is used to remove collodal and dissolved organic matter in waste water ​
Juli2301 [7.4K]

Answer:

Aerobic biological treatment process

Explanation:

Aerobic biological treatment process in which micro-organisms, in the presence of oxygen, metabolize organic waste matter in the water, thereby producing more micro-organisms and inorganic waste matter like CO₂, NH₃ and H₂O.

3 0
3 years ago
La base de los tema relacionados a las ciencia de las ingeniería es?
Yanka [14]

Answer:

La ciencia y la ingeniería conciben el mundo como comprensible, con reglas que gobiernan su funcionamiento y que a través de un estudio cuidadoso y sistemático se puede evidenciar mediante patrones consistentes que permitan la oportunidad de examinar las características fundamentales que mejor describen los fenómenos.

Explanation:

5 0
3 years ago
The current in a 20 mH inductor is known to be: 푖푖=40푚푚푚푚푡푡≤0푖푖=푚푚1푒푒−10,000푡푡+푚푚2푒푒−40,000푡푡푚푚푡푡≥0The voltage across the induct
Anni [7]

Answer:

a) The expression for electrical current: i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

The expression for voltage: v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) For t<=0 the inductor is storing energy and for t > 0 the inductor is delivering energy.

Explanation:

The question text is corrupted. I found the complete question on the web and it goes as follow:

The current in a 20 mH inductor is known to be: i = 40 mA at t<=0 and i = A1*e^(-10,000*t) + A2*e^(-40,000*t) A at t>0. The voltage across the inductor (passive sign convention) is -68 V at t = 0.

a. Find the numerical expressions for i and v for t>0.

b. Specify the time intervals when the inductor is storing energy and is delivering energy.

A inductor stores energy in the form of a magnetic field, it behaves in a way that oposes sudden changes in the electric current that flows through it, therefore at moment just after t = 0, that for convenience we'll call t = 0+, the current should be the same as t=0, so:

i = A1*e^(-10,000*(0)) + A2*e^(-40,000*(0))

40*10^(-3) = A1*e^(-10,000*0) + A2*e^(-40,000*0)

40*10^(-3) = (A1)*1 + (A2)*1

40*10^(-3) = A1 + A2

A1 + A2 = 40*10^(-3)

Since we have two variables (A1 and A2) we need another equation to be able to solve for both. For that reason we will use the voltage expression for a inductor, that is:

V = L*di/dt

We have the voltage drop across the inductor at t=0 and we know that the current at t=0 and the following moments after that should be equal, so we can use the current equation for t > 0 to find the derivative on that point, so:

di/dt = d(A1*e^(-10,000*t) + A2*e^(-40,000*t))/dt

di/dt = [d(-10,000*t)/dt]*A1*e^(-10,000*t) + [d(-40,000*t)/dt]*A2*e^(-40,000*t)

di/dt = -10,000*A1*e^(-10,000*t) -40,000*A2*e^(-40,000*t)

By applying t = 0 to this expression we have:

di/dt (at t = 0) = -10,000*A1*e^(-10,000*0) - 40,000*A2*e^(-40,000*0)

di/dt (at t = 0) = -10,000*A1*e^0 - 40,000*A2*e^0

di/dt (at t = 0) = -10,000*A1- 40,000*A2

We can now use the voltage equation for the inductor at t=0, that is:

v = L di/dt (at t=0)

68 = [20*10^(-3)]*(-10,000*A1 - 40,000*A2)

68 = -400*A1 -800*A2

-400*A1 - 800*A2 = 68

We now have a system with two equations and two variable, therefore we can solve it for both:

A1 + A2 = 40*10^(-3)

-400*A1 - 800*A2 = 68

Using the first equation we have:

A1 = 40*10^(-3) - A2

We can apply this to the second equation to solve for A2:

-400*[40*10^(-3) - A2] - 800*A2 = 68

-1.6 + 400*A2 - 800*A2 = 68

-1.6 -400*A2 = 68

-400*A2 = 68 + 1.6

A2 = 69.6/400 = 0.174

We use this value of A2 to calculate A1:

A1 = 40*10^(-3) - 0.174 = -0.134

Applying these values on the expression we have the equations for both the current and tension on the inductor:

i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

v = [20*10^(-3)]*[-10,000*(-0.134)*e^(-10,000*t) -40,000*(0.174)*e^(-40,000*t)]

v = [20*10^(-3)]*[1340*e^(-10,000*t) - 6960*e^(-40,000*t)]

v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) The question states that the current for the inductor at t > 0 is a exponential powered by negative numbers it is expected that its current will reach 0 at t = infinity. So, from t =0 to t = infinity the inductor is delivering energy. Since at time t = 0 the inductor already has a current flow of 40 mA and a voltage, we can assume it already had energy stored, therefore for t<0 it is storing energy.

8 0
3 years ago
Other questions:
  • Explain how a CO2 cartridge powers the dragster you will be building. A good website to use is How Stuff Works. (howstuffworks.c
    5·2 answers
  • A closed system undergoes an adiabatic process during which the work transfer into the system is 12 kJ. The system then returns
    14·1 answer
  • A venturi meter is to be installed in a 63 mm bore section of a piping system to measure the flow rate of water in it. From spac
    15·1 answer
  • A 150-lbm astronaut took his bathroom scale (a spring scale) and a beam scale (compares masses) to the moon where the local grav
    13·1 answer
  • We need to design a logic circuit for interchanging two logic signals. The system has three inputs I1I1, I2I2, and SS as well as
    11·1 answer
  • Please please help please with this this is the link for the story PLEASE PLEASE HELP PLEASE PLEASE help please
    7·1 answer
  • Air is compressed in a well insulated compressor from 95 kPa and 27 C to 600 kPa and 277 C. Use the air tables; assume negligibl
    11·1 answer
  • A(94,0,14) B(52,56,94) C(10,6,48) D(128,64,10)
    6·1 answer
  • Drivers must be careful when driving close to cyclists and should keep at least ___ feet apart when passing cyclists on the road
    15·1 answer
  • Which type of system is being researched to deliver power to several motors to drive multiple systems in vehicles?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!