Answer: Option A is correct -- 2.6 at% Pb and 97.4 at% Sn.
Explanation:
Option A is the only correct option -- 2.6 at% Pb and 97.4 at% Sn. While option B, which is 7.6 at% Pb and 92.4 at% Sn. and option C, which is 97.4 at% Pb and 2.6 at% Sn. and option D, which is 92.4 at% Pb and 7.6 at% Sn. are wrong.
Answer:

Explanation:
generally regeneration of cycle is used in the case of gas turbine. due to regeneration efficiency of turbine is increased but there is no effect on the on the net work out put of turbine.Actually in regeneration net heta input is decreases that is why total efficiency increase.
Now from T-S diagram



Due to generation
amount of energy has been saved.

So efficiency of cycle 

Effectiveness of re-generator

So the efficiency of regenerative cycle

Answer:
true
Explanation:
A well designed product will increase in sells and in stock.
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
Answer:
The match
Explanation:
You can light both the lantern and the candle if you light the match first.
I don't know of this is a homework question, but I answered it anyway :)