Answer:
86 mm
Explanation:
From the attached thermal circuit diagram, equation for i-nodes will be
Equation 1
Similarly, the equation for outer node “o” will be
Equation 2
The conventive thermal resistance in i-node will be
Equation 3
The conventive hermal resistance per unit area is
Equation 4
The conductive thermal resistance per unit area is
Equation 5
Since
is given as 100,
is 40
is 300
is 25
Substituting the values in equations 3,4 and 5 into equations 1 and 2 we obtain
Equation 6
Equation 7
From equation 6 we can substitute wherever there’s
with 3000L+40 as seen in equation 7 hence we obtain
The above can be simplified to be
-3000L=1.665-260
Therefore, insulation thickness is 86mm
Answer:
I=9.6×e^{-8} A
Explanation:
The magnetic field inside the solenoid.
B=I*500*muy0/0.3=2.1×e ^-3×I.
so the total flux go through the square loop.
B×π×r^2=I×2.1×e^-3π×0.025^2
=4.11×e^-6×I
we have that
(flux)'= -U
so differentiating flux we get
so the inducted emf in the loop.
U=4.11×e^{-6}×dI/dt=4.11×e^-6×0.7=2.9×e^-6 (V)
so, I=2.9×e^{-6}÷30
I=9.6×e^{-8} A
Answer:
1028.1184 Ohms
Explanation:
<u>Given the following data;</u>
- Initial resistance, Ro = 976 Ohms
- Initial temperature, T1 = 0°C
- Final temperature, T2 = 89°C
Assuming the temperature coefficient of resistance for carbon at 0°C is equal to 0.0006 per degree Celsius.
To find determine its new resistance, we would use the mathematical expression for linear resistivity;

Substituting into the equation, we have;



