<h2>
Answer:</h2>
800gm
<h2>
Explanation:</h2>
Archimedes principle states that when an object is immersed in a liquid there is an apparent loss of weight of the object. This apparent loss of weight is also the upthrust experienced by the liquid. The upthrust is equal to the weight of the liquid displaced.
Following from the above statement, when the body of volume 100c.c is immersed in the water contained in the jar, the upthrust experienced is equal to the weight of the water displaced.
<em>Note: In the question, weight is measured just using the mass.</em>
Mass (m) is the product of density (ρ) of liquid (which is water in this case) and volume (v) of body immersed. i.e
m = ρ x v
Where;
ρ = 1 gm/cm³
v = 100c.c = 100cm³
=> m = 1 gm/cm³ x 100cm³
=> m = 100gm
Therefore the weight of water displaced is 100gm
Now, the weight of the water and jar after immersion is the sum of the weight of water and jar before immersion, and the weight of the water displaced. i.e
Weight of water and jar after immersion = 700gm + 100gm = 800gm
True.
Density = mass / volume, Unit = g / cm³.
This is a common unit because of its affiliation with the SI unit and because that also our popular liquid which is water = 1 g/cm³
<span>Matter is c) something that has mass and occupies space. Everything in our known universe takes up space, and everything is made up of matter. Matter as a concept is not something that can have any unit of measurement put upon it. </span>
V = t^2 - 9t + 18
position, s
s = t^3 /3 - 4.5t^2 +18t + C
t = 0, s = 1 => 1=C => s = t^3/3 -4.5t^2 + 18t + 1
Average velocity: distance / time
distance: t = 8 => s = 8^3 / 3 - 4.5 (8)^2 + 18(8) + 1 = 27.67 m
Average velocity = 27.67 / 8 = 3.46 m/s
t = 5 s
v = t^2 - 9t + 18 = 5^2 - 9(5) + 18 = -2 m/s
speed = |-2| m/s = 2 m/s
Moving right
V > 0 => t^2 - 9t + 18 > 0
(t - 6)(t - 3) > 0
=> t > 6 and t > 3 => t > 6 s => Interval (6,8)
=> t < 6 and t <3 => t <3 s => interval (0,3)
Going faster and slowing dowm
acceleration, a = v' = 2t - 9
a > 0 => 2t - 9 > 0 => 2t > 9 => t > 4.5 s
Then, going faster in the interval (4.5 , 8) and slowing down in (0, 4.5)
Average acceleration of the baseball:
Explanation:
Since the motion of the baseball is a uniformly accelerated motion, we can use the following suvat equation:
where
u is the initial velocity
v is the final velocity
a is the acceleration
s is the displacement of the object
For the baseball in this problem, we have:
u = 2.2 m/s is the initial velocity
v = 0 is the final velocity (it comes to a stop)
s = 24 mm = 0.024 m is the displacement of the ball while decelerating
Therefore, we can solve for a to find the acceleration:
where the negative sign means the baseball is slowing down.
Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly