<h3>
Answer:</h3>
16.7 g H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2NaOH (s) + CO₂ (g) → Na₂CO₃ (s) + H₂O (l)
[Given] 1.85 mol NaOH
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol NaOH → 1 mol H₂O
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
16.6685 g H₂O ≈ 16.7 g H₂O
Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
To answer the problem above first we need to find the difference of molar mass of NI3 from I2, 394.71 g/mol - 253.80 g/mol = 140.91 g/mol. Knowing the molar mass of the difference of NI3 from I2, in equation mass (g) / moles (mol) = molar mass, then we substitute. 3.58g / moles = 140.91 g/mol.
moles = 3.58 / 140.91 = 0.025 moles.
Answer:
Kr has one more electron than br and so, the nuclear charge increase, which means the nuclear attraction between the nucleus and outer most electron will increase and so will be harder to remove the electron from Kr than Br, so Kr has higher 1st ionisation.
Mark me brainliest!
God bless!