Answer:
1.47 atm
Explanation:
Step 1: Calculate the moles corresponding to 41.6 g of oxygen
The molar mass of oxygen is 32.00 g/mol.
41.6 g × 1 mol/32.00 g = 1.30 mol
Step 2: Convert 30.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15 = 30.0 + 273.15 = 303.2 K
Step 3: Calculate the pressure exerted by the oxygen
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 1.30 mol × (0.0821 atm.L/mol.L) × 303.2 K / 22.0 L = 1.47 atm
This problem is providing information about the mass of a tennis ball, 56.6 g (0.0566 kg) and asks for the velocity it will have to equal the wavelength of green light, which is 5400 A or 540 nm (5.4x10⁻⁷ m). Thus, after doing the math, the result is 2.17x10⁻²⁶ m/s.
<h3>
Broglie's wavelength:</h3>
In this case, we recall the formula of the Broglie's wavelength as shown below:

Whereas lambda is the wavelength, h is the Planck's constant, m the mass and v the speed; thus, we solve for the speed according to the question:

<h3>Calculations:</h3>
Then, we just plug in the numbers we were given to get the answer:

Learn more about Broglie's wavelength: brainly.com/question/5440536
The oxygen atom has 4 valence electrons. Valence electrons are the electrons found in the outermost shell of an atom. These are the electrons that participate in chemical reactions during bonding. Since 4 electrons make up 2 pairs, an oxygen atom is capable of making <em>2 covalent bonds</em>.
Answer:
the emission of visible light by a body, caused by its high temperature.Compare luminescence.
the light produced by such an emission.
the quality of being incandescent.
Answer:
13.20 litres
Explanation:
use pascal's law of volume and temperature