Bronchi that is the answer
HSDB and the SRC Physical Properties database database reports that propionic acid has a water solubility of 1000 g/l at 25 °C. Ullmann and Knovel Solvents - A Properties Database reports that propionic acid is miscible in any ratio with water.
Answer: A persistent or non-volatile chemical agent can remain on a surface for more than 24 hours.
Explanation:
Non-volatile substance is defined as the one which does not readily evaporate into its surrounding. Generally, a non-volatile substance has strong intermolecular forces between its molecules.
A non-volatile substance will take more than 24 hours to remain on the surface.
On the other hand, a substance with weak intermolecular forces present in its molecules will readily evaporate into the atmosphere.
For example, acetic acid is a volatile substance and quickly evaporates into the atmosphere.
Thus, we can conclude that a persistent or non-volatile chemical agent can remain on a surface for more than 24 hours.
Answer: Option (B) is the correct answer.
Explanation:
A molecules that will have more number of hydrogen bonding will has highest boiling point because to break the hydrogen bonds high heat needs to be provided.
So, in the molecule
there is presence of two alcoholic groups. Hence, it will have strongest hydrogen bonding as compared to the rest of molecules.
In the molecule
there will be hydrogen bonding and dipole-dipole interactions. Hence, it boiling point will be slightly less than
.
In the molecule
, there will be only hydrogen bonding. Hence, its boiling point is less than
.
In the molecule
, there is no hydrogen bonding but there will be only dipole-dipole interactions. Hence, its boiling point will be the least.
Therefore, we can conclude that increasing order of boiling point will be as follows.
<
<
<
Answer:
6.25 X10^{-9} = Ka

Explanation:
The ionic equation for the hydrolysis of the cation of the given salt will be:

The expression for Ka will be:
Ka = ![\frac{[H^{+}][MOH]}{[M^{+}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BMOH%5D%7D%7B%5BM%5E%7B%2B%7D%5D%7D)
As given that the concentration of the salt is 0.1 M and pH of solution = 4.7, we can determine the concentration of Hydrogen ions from the pH
pH = -log [H⁺]
[H⁺] = antilog(-pH) = antilog (-4.7) = 2 X 10⁻⁵ M = [MOH]
Let us calculate Ka from this,
Ka = 
The relation between Ka an Kb is
KaXKb =10⁻¹⁴
