Answer:
1. NaN₃(s) → Na(s) + 1.5 N₂(g)
2. 79.3g
Explanation:
<em>1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen.</em>
NaN₃(s) → Na(s) + 1.5 N₂(g)
<em>2. Suppose 43.0L of dinitrogen gas are produced by this reaction, at a temperature of 13.0°C and pressure of exactly 1atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits.</em>
First, we have to calculate the moles of N₂ from the ideal gas equation.

The moles of NaN₃ are:

The molar mass of NaN₃ is 65.01 g/mol. The mass of NaN₃ is:

Do you have a picture of where you go this question from?
The mixture contains 62 % one isomer and 38 % the enantiomer.
Let’s say that the mixture contains 62 % of the (<em>R</em>)-isomer.
Then % (<em>S</em>) = 100 % -62 % = 38 %
ee = % (<em>R</em>) - % (<em>S</em>) = 62 % -38 % = 24 %
Answer:
See the answer below
Explanation:
<em>The correct answer would be that the solute particles lower the solvent's vapor pressure, thus requiring a higher temperature to cause boiling.</em>
Dissolving a solute particle in a solvent leads to a decrease in the vapor pressure of the solvent above the resulting solution when compared to the pure solvent. The lower the vapor pressure of a liquid, the higher the temperature required for the liquid to boil and vice versa. Hence, a higher temperature would be needed to boil a solvent with dissolved solutes.