Answer is: thermal conduction.
<span>Thermal
conduction is the transfer of heat through physical
contact. Thermal conduction is the transfer of heat by
microscopic collisions of particles. Heat spontaneously flows from a
hotter to a colder body.
</span><span>The thermal energy of that core is transferred to the surface of the Earth and lower levels of the oceans by conduction. Water in lakes and oceans transfers heat to the surface by convection.</span>
Answer:
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Explanation:
The strategy here is to account for the species at equilibrium given that the concentration of [NO]=0.062M at equilibrium is known and the quantities initially present and its stoichiometry.
2NO(g) + 2H2(g) ⇒ N2(g) + 2H2O(g)
i mol 0.10 0.050 0.10
c mol -0.038 -0.038 +0019 +0.038
e mol 0.062 0.012 00.019 0.057
Since the volume of the vessel is 1.0 L, the concentrations in molarity are:
[NO] = 0.062 M
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Answers:
(a) 1s² 2s²2p³; (b) 1s² 2s²2p⁶ 3s²3p⁶ 4s²3d²; (c) 1s² 2s²2p⁶ 3s²3p⁵
Step-by-step explanation:
One way to solve this problem is to add electrons to the orbitals one-by-one until you have added the required amount.
Fill the subshells in the order listed in the diagram below. Remember that an s subshell can hold two electrons, while a p subshell can hold six, and a d subshell can hold ten.
(a) <em>Seven electrons
</em>
1s² 2s²2p³
There are two electrons in the 2s subshell and three in the 2p subshell. The remaining two electrons are in the inner 1s subshell.
(b) <em>22 electrons
</em>
1s² 2s²2p⁶ 3s²3p⁶ 4s²3d²
There are two electrons in the 4s subshell and two in the 2p subshell. The remaining 18 electrons are in the inner subshells.
(c) <em>17 electrons</em>
1s² 2s²2p⁶ 3s²3p⁵
There are two electrons in the 3s subshell and five in the 2p subshell. The remaining 10 electrons are in the inner subshells.
Answer is: 0,0095 mol of hydrogen gas will be produced in reaction.
Chemical reaction: Ca + 2HCl → CaCl₂ + H₂.
m(Ca) = 0,38 g.
n(H₂) = ?
n(Ca) = m(Ca) ÷ M(Ca).
n(Ca) = 0,38 g ÷ 40 g/mol
n(Ca) = 0,0095 mol.
from reaction: n(Ca) : n(H₂) = 1 : 1.
n(H₂) = n(Ca) = 0,0095 mol.
n - amount of substance.