Answer:
<em>58,219 < 58,231</em>
Step-by-step explanation:
58,219 is less than 58,231, so the sentence is
58,219 < 58,231
Answer:
9.75 Average age
Step-by-step explanation:
<h3><u>S</u><u> </u><u>O</u><u> </u><u>L</u><u> </u><u>U</u><u> </u><u>T</u><u> </u><u>I</u><u> </u><u>O</u><u> </u><u>N</u><u> </u><u>:</u></h3>
As per the given question, it is stated that the length of a rectangle is 5 m less than twice the breadth.
Assumption : Let us assume the length as "l" and width as "b". So,
Also, we are given that the perimeter of the rectangle is 50 m. Basically, we need to apply here the formula of perimeter of rectangle which will act as a linear equation here.
- <em>l</em> denotes length
- <em>b</em> denotes breadth
![\\ \twoheadrightarrow \quad\sf{60= 6b} \\](https://tex.z-dn.net/?f=%5C%5C%20%5Ctwoheadrightarrow%20%5Cquad%5Csf%7B60%3D%206b%7D%20%5C%5C)
![\\ \twoheadrightarrow \quad\underline{\bf{10\; m = Width }} \\](https://tex.z-dn.net/?f=%5C%5C%20%5Ctwoheadrightarrow%20%5Cquad%5Cunderline%7B%5Cbf%7B10%5C%3B%20m%20%3D%20Width%20%7D%7D%20%5C%5C)
Now, finding the length. According to the question,
![\\ \twoheadrightarrow \quad\underline{\bf{15\; m = Length }} \\](https://tex.z-dn.net/?f=%5C%5C%20%5Ctwoheadrightarrow%20%5Cquad%5Cunderline%7B%5Cbf%7B15%5C%3B%20m%20%3D%20Length%20%7D%7D%20%5C%5C)
<u>Therefore</u><u>,</u><u> </u><u>length</u><u> </u><u>and</u><u> </u><u>breadth</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>r</u><u>ectangle</u><u> </u><u>is</u><u> </u><u>1</u><u>5</u><u> </u><u>m</u><u> </u><u>and</u><u> </u><u>10</u><u> </u><u>m</u><u>.</u><u> </u>
Answer:
![f^{-1}(x)=9x-18](https://tex.z-dn.net/?f=f%5E%7B-1%7D%28x%29%3D9x-18)
Step-by-step explanation:
we have
![f(x)=\frac{1}{9}x+2](https://tex.z-dn.net/?f=f%28x%29%3D%5Cfrac%7B1%7D%7B9%7Dx%2B2)
Let
![y=f(x)](https://tex.z-dn.net/?f=y%3Df%28x%29)
![y=\frac{1}{9}x+2](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B1%7D%7B9%7Dx%2B2)
Exchange variables x for y and y for x
![x=\frac{1}{9}y+2](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B1%7D%7B9%7Dy%2B2)
Isolate the variable y
![x-2=\frac{1}{9}y](https://tex.z-dn.net/?f=x-2%3D%5Cfrac%7B1%7D%7B9%7Dy)
![y=9(x-2)](https://tex.z-dn.net/?f=y%3D9%28x-2%29)
![y=9x-18](https://tex.z-dn.net/?f=y%3D9x-18)
Let
![f^{-1}(x)=y](https://tex.z-dn.net/?f=f%5E%7B-1%7D%28x%29%3Dy)
-------> inverse function