1 bar or 100 000 pascales. Or 1020 hPa. It kinda differentiates.
It is the first one. But if you have this question you are not a little boy
In order to calculate the time taken by the snowball to reach the highest point in its journey, we need to consider the variables along the y-direction.
Let us list out what we know from the question so that we can decide on the equation to be used.
We know that Initial Y Velocity = 8.4 m/s
Acceleration in the Y direction = -9.8 m/, since the acceleration due to gravity points in the downward direction.
Final Y Velocity = 0 because at the highest point in its path, an object comes to rest momentarily before falling down.
Time taken t = ?
From the list above, it is easy to see that the equation that best suits our purpose here is
Plugging in the numbers, we get 0 = 8.4 - (9.8)t
Solving for t, we get t = 0.857 s
Therefore, the snowball takes 0.86 seconds to reach its highest point.
Answer:
9 cm.
Explanation:
The energy used for stretch the spring from to will be ,
The energy used for stretch the spring from to will be ,
using the energy of spring formula ,we find that
Dividing both the equation will get,
Therefore, the natural length of the spring is, 9 cm.
Answer:
16.6 °C
Explanation:
From the question given above, the following data were obtained:
Temperature at upper fixed point (Tᵤ) = 100 °C
Resistance at upper fixed point (Rᵤ) = 75 Ω
Temperature at lower fixed point (Tₗ) = 0 °C
Resistance at lower fixed point (Rₗ) = 63.00Ω
Resistance at room temperature (R) = 64.992 Ω
Room temperature (T) =?
T – Tₗ / Tᵤ – Tₗ = R – Rₗ / Rᵤ – Rₗ
T – 0 / 100 – 0 = 64.992 – 63 / 75 – 63
T / 100 = 1.992 / 12
Cross multiply
T × 12 = 100 × 1.992
T × 12 = 199.2
Divide both side by 12
T = 199.2 / 12
T = 16.6 °C
Thus, the room temperature is 16.6 °C