The answer is Anguer...
<em>Hope </em><em>it </em><em>helps.</em><em>.</em><em>.</em><em> </em><em>pls </em><em>mark</em><em> brainliest</em>
Answer:
F = 4000 N
Explanation:
given,
mass of rocket (M)= 5000 Kg
10 Kg gas burns at speed (m)= 4000 m/s
time = 10 s
average force = ?
at the end the rocket is at rest
by conservation of momentum
M v + m v' = 0
5000 x v - 10 x 4000 = 0
5000 v = 40000
v = 8 m/s
speed of rocket = 8 m/s
now,
we know
change in momentum = F x Δ t


F = 4000 N
Hence, the average force applied to the rocket is equal to F = 4000 N
Answer:
The work done on the canister by the 5.0 N force during this time is
54.06 Joules.
Explanation:
Let the initial kinetic energy of the canister be
KE₁ =
=
= 19.44 J in the x direction
Let the the final kinetic energy of the canister be
KE₂ =
=
= 73.5 J in the y direction
Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final
= 73.5 J - 19.44 J = 54.06 J
Answer:
Explanation:
From the given information:
the car's momentum = momentum of the truck
∴
(a) 816 kg × v = 2650 kg × 16.0 km/h
v = (2650 kg × 16.0 km/h) / 816 kg
v = 51.96 km/hr
(b) 816 kg × v = 9080 kg × 16.0 km/h
v = (9080 kg × 16.0 km/h) / 816 kg
v = 178.04 km/hr