1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
3 years ago
6

A very long, uniformly charged cylinder has radius R and linear charge density λ. Find the cylinder's electric field strength ou

tside the cylinder,
r≥R
. Give your answer as a multiple of
λ/
ε
0

Physics
2 answers:
Alborosie3 years ago
6 0

The electric field of cylinder at a distance r more than radius of cylinder is equal to \boxed{E=\dfrac{\lambda}{2\pi\epsilon_0r}}}.

Further Explanation:

Gauss law states that net electric flux through any closed surface is equal to \dfrac{1}{\epsilon_0} times the net electric charge within that closed surface. The hypothetical closed surface is name as Gaussian surface. The electric flux also defined as the total electric field lines, which passes through a surface area of any closed curve.

Given:

The linear charge density of cylinder is \lambda.

Concept:

Consider the length of the cylinder is L.

Charge on curved surface of cylinder is \lambda L.

For a Gaussian curve in the shape of a concentric cylinder (with a radius more than the radius of charged cylinder) we can write gauss law as:

\phi=\dfrac{q}{\epsilon_0}

Substitute \lambda L for q in above equation.

\phi=\dfrac{\lambda L}{\epsilon_0}                          …… (I)

Here, \phi is the Electric flux and \epsilon_0 is the permittivity of vacuum.

Since the electric field is constant for a given distance r from the axis of the cylinder we can write that:

\phi=E2\pi rL                                                            …… (II)

Here, E is the electric field of charge on cylinder, L is the height or length of curved surface and r is the radius of Gaussian cylindrical curve.

On equating the equation (I) and equation (II) and Rearranging it for E :

\boxed{E=\dfrac{\lambda}{2\pi\epsilon_0r}}}

Thus, the electric field of cylinder at a distance r more than radius of cylinder is equal to \boxed{E=\dfrac{\lambda}{2\pi\epsilon_0r}}}.

Learn more:

1. Threshold frequency of photoelectric surface: brainly.com/question/6953278

2. Find the odd one out for lever: brainly.com/question/1073452

3. Volume of gas after expansion: brainly.com/question/9979757

Answer Details:

Grade: College

Subject: Physics

Chapter: Electrostatics

Keywords:

Very long, uniformly charged cylinder, radius R, linear charge density λ, cylinder, electric field strength, gauss law, net electric charge and distance r from the axis of the cylinder.

mixer [17]3 years ago
5 0

The cylinder's electric field magnitude, at a distance <em>r</em> from the axis of the cylinder (greater than the cylinder's radius), is equal to E= \frac{\lambda}{2\pi \epsilon_0 \cdot r}

<h3>Further explanation</h3>

Matter is the building block of everything that we encounter in our lives. Matter is made of atoms, which are in turn made of tiny particles which are called electrons, protons, and neutrons. The ammount of these 3 elements, and their topological configuration in the atoms, is what determines what a certain element is (like Carbon, Hydrogen, Iron, etc).

In some cases, some elements may lose or gain some electrons. Regarded that this missing or extra electrons are not very high in number, the material doesn't lose any of its properties, however it will always try to get its number of electrons back to normal. This is when we say that an element has a <em>charge</em>, which is a measure of how much electrons a body needs to get back to normal. A body has positive charge if it lacks electrons, and has negative charge if it has extra electrons.

This charge causes the material to have an Electric field, which is a measure of how much does it attract or repel electrons. In the case of our problem, we need to compute exactly that, the Electric field. In our problem, we have an infinitely long cylinder with a linear charge density \lambda, this means that all parts of the cylinder have the same charge, and due to symmetry, the electric field is constant on the angular and longitudinal directions of the cylinder.

This makes easy to apply Gauss' Law, since for a Gaussian curve in the shape of a concentric cylinder (with a higher radius than that of our charged cylinder) we can write:

\Phi = \frac{\lambda \cdot L}{\epsilon_0}

Where \Phi is called the Electric flux. Since the electric field is constant for a given distance <em>r</em> from the axis of the cylinder we can write that:

\Phi = E \cdot 2\pi r \cdot L

Joining both our expressions we can get that:

E= \frac{\lambda}{2\pi \epsilon_0 \cdot r}

<h3 /><h3>Learn more</h3>
  • Description on Electric fields: brainly.com/question/8971780
  • Relation between electric fields and magnetism: brainly.com/question/2838625
  • How can we use electric charges: brainly.com/question/10427437
<h3>Keywords</h3>

Electrons, protons, electric field, cylinder, electric flux

You might be interested in
A gray kangaroo can bound across level ground with each jump carrying it 9.1 m from the takeoff point. Typically the kangaroo le
Alona [7]

Answer:

u = 10.63 m/s

h = 1.10 m

Explanation:

For Take-off speed ..

by using the standard range equation we have

R = u² sin2θ/g

R = 9.1 m

θ = 26º,

Initial velocity = u

solving for u

u² = \frac{Rg}{sin2\theta}

u^2 = \frac{9.1 x 9.80}{sin26}

u^2 = 113.17

u = 10.63 m/s

for Max height

using the standard h(max) equation ..

v^2 = (v_osin\theta)^2 -2gh

h =\frac{(v_o^2sin\theta)^2}{2g}

h  =  \frac{(113.17)(sin26)^2}{(2 x 9.80)}}

h = 1.10 m

7 0
3 years ago
50 grams of ice cubes at -15°C are used to chill a water at 30°C with mass mH20 = 200 g. Assume that the water is kept in a foam
Arada [10]

Answer : The final temperature is, 25.0^oC

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

q_1=-q_2

m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)

where,

c_1 = specific heat of ice = 2.09J/g^oC

c_2 = specific heat of water = 4.18J/g^oC

m_1 = mass of ice = 50 g

m_2 = mass of water = 200 g

T_f = final temperature = ?

T_1 = initial temperature of ice = -15^oC

T_2 = initial temperature of water = 30^oC

Now put all the given values in the above formula, we get:

50g\times 2.09J/g^oC\times (T_f-(-15))^oC=-200g\times 4.184J/g^oC\times (T_f-30)^oC

T_f=25.0^oC

Therefore, the final temperature is, 25.0^oC

5 0
3 years ago
A basketball player is 4.22 m from
max2010maxim [7]

Answer: The height above the release point is 2.96 meters.

Explanation:

The acceleration of the ball is the gravitational acceleration in the y axis.

A = (0, -9.8m/s^)

For the velocity we can integrate over time and get:

V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))

for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)

P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)

now, the time at wich the horizontal displacement is 4.22 m will be:

4.22m = 9.20*cos(69°)*t

t = (4.22/ 9.20*cos(69°)) = 1.28s

Now we evaluate the y-position in this time:

h =  -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m

The height above the release point is 2.96 meters.

3 0
3 years ago
Read 2 more answers
What does frequency describe?
ddd [48]

The whole definition of frequency is:  <em>How often something happens.  </em>

Especially referring to something that happens over and over and over and over.

One example is Choice-C: How often the particles of a medium vibrate.

"Frequency" comes from the word "frequent".  That means "often", and "frequency" just means "often-ness" ... HOW often the thing happens.

Some other examples:

Frequency of jump-roping . . . maybe 60 per minute .

Frequency of rain . . . maybe 5 per month .

Frequency of an AM radio station . . . maybe 1 million waves per second.

(If it's something <u><em>per second</em></u>, then we call it "Hertz".  That's not for the car rental company.  It's for Heinrich Hertz, the German Physicist who was the first one to prove that electromagnetic waves exist.  He sent radio waves all the way ACROSS HIS LABORATORY and detected them at the other side ( ! ), in 1887.)

Frequency of the wiggles in the sound wave coming out of a trumpet playing the note ' A ' . . . 440 Hertz.

Frequency of sunrise and the Chicago Tribune newspaper . . . 1 per day

Frequency of the cycle of Moon phases and an average human woman's ovulation cycle: 1 per 29.531 days, 1 per ~28 days .

7 0
3 years ago
Read 2 more answers
An ideal parallel-plate capacitor consists of a set of two parallel plates of area Separated by a very small distance 푑. This ca
dolphi86 [110]

Answer:

doubled the initial value

Explanation:

Let the area of plates be A and the separation between them is d.

Let V be the potential difference of the battery.

The energy stored in the capacitor is given by

U = Q^2/2C   ...(1)

Now the battery is disconnected, it means the charge is constant.

the separation between the plates is doubled.

The capacitance of the parallel plate capacitor is inversely proportional to the distance between the plates.

C' = C/2

the new energy stored

U' = Q^2 /  2C'

U' = Q^2/C = 2 U

The energy stored in the capacitor is doubled the initial amount.

8 0
3 years ago
Other questions:
  • 2. Describe what would happen to both air temperature and soil temperature if cold weather were to pass through the area.
    15·1 answer
  • Study the scenario.
    6·2 answers
  • A scientist notices that an oil slick floating on water when viewed from above has many different colors reflecting off the surf
    7·1 answer
  • An 0.80-m aluminum bar is held with its length parallel to the east-west direction and dropped from a bridge. Just before the ba
    6·1 answer
  • the amplitude of the wave is which of the following A. Resonance B. Reflection C. Energy D. Magnitude
    11·1 answer
  • Sally goes on a hike. The distance she walks compared to the amount of time she walks is shown on the graph. Which statement is
    10·1 answer
  • How to separate a mixture of iron ad copper pieces using an electromagent​
    6·1 answer
  • 4-year-old becomes frightened of the dark and refuses to go to sleep at night. How would a psychoanalyst and a behaviorist diffe
    15·1 answer
  • Jus de fruits frais
    8·1 answer
  • Which would most likely form a homogenous mixture?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!