<em>Hey</em><em>!</em><em>!</em><em>!</em>
<em>here</em><em>'s</em><em> </em><em>your</em><em> </em><em>answer</em>
<em>X+</em><em>1</em><em>2</em><em>8</em><em>=</em><em>1</em><em>8</em><em>0</em><em>(</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>angle</em><em> </em><em>in</em><em> </em><em>straight</em><em> </em><em>line</em><em>)</em>
<em>or</em><em>,</em><em>X=</em><em>1</em><em>8</em><em>0</em><em>-</em><em>1</em><em>2</em><em>8</em>
<em>X=</em><em>5</em><em>2</em><em> </em><em>degree</em><em>.</em>
<em>So</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>X </em><em>is</em><em> </em><em>5</em><em>2</em><em> </em><em>degree</em><em>.</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
Answer: F=6.67 x 10^21
G:6.67 x 10^ -11 N m2/kg2
Answer: The probability that the avg. salary of the 100 players exceeded $1 million is approximately 1.
Explanation:
Step 1: Estimate the standard error. Standard error can be calcualted by dividing the standard deviation by the square root of the sample size:

So, Standard Error is 0.08 million or $80,000.
Step 2: Next, estimate the mean is how many standard errors below the population mean $1 million.


-6.250 means that $1 million is siz standard errors away from the mean. Since, the value is too far from the bell-shaped normal distribution curve that nearly 100% of the values are greater than it.
Therefore, we can say that because 100% values are greater than it, probability that the avg. salary of the 100 players exceeded $1 million is approximately 1.