19 protons and 19 electrons but neutrons are vary
The given complex ion is as follow,
[Ru (CN) (CO)₄]⁻
Where;
[ ] = Coordination Sphere
Ru = Central Metal Atom = <span>Ruthenium
CN = Cyanide Ligand
CO = Carbonyl Ligand
The charge on Ru is calculated as follow,
Ru + (CN) + (CO)</span>₄ = -1
Where;
-1 = overall charge on sphere
0 = Charge on neutral CO
-1 = Charge on CN
So, Putting values,
Ru + (-1) + (0)₄ = -1
Ru - 1 + 0 = -1
Ru - 1 = -1
Ru = -1 + 1
Ru = 0
Result:
<span>Oxidation state of the metal species in each complex [Ru(CN)(CO)</span>₄]⁻ is zero.
Answer : The final temperature of the mixture is, 
Explanation :
First we have to calculate the mass of ethanol and water.

and,

Now we have to calculate the final temperature of the mixture.
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of ethanol = 
= specific heat of water = 
= mass of ethanol = 35.5 g
= mass of water = 45.0 g
= final temperature of mixture = ?
= initial temperature of ethanol = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final temperature of the mixture is, 
120.38 g/mol is the answer
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.