A polar bond is formed with atoms having different electronegativities. The bonding electrons are attracted more towards the atom with greater electronegativity resulting in unequal sharing of electrons. Therefore the molecule develop partial charges and becomes polar. Polar molecules have dipole moment that is the partial charge on molecules due to differences in electronegativity between atoms.
A non-polar bond is formed with atoms having the same electronegativity, hence the bonded pair of electron is shared equally between atoms. Non-polar molecules have no moment.
Note that: symmetrical molecules having polar bonds are non-polar because the dipoles of the bond exert equal and opposite effect. Hence the dipoles cancel the charges.
Example: HCl
In HCl, Cl is more electronegative therefore Cl atom pulls the electron pair of the covalent bond towards itself and develops a partial negative charge. Consequently H develops a partial positive charge. This therfore leads to the formation of a dipole.
Answer:
- <em>The coefficients in a chemical equation represent the </em><u>relative number of moles of each reactant and product that interven in the chemical reaction.</u>
Explanation:
The <em>coefficients</em> are the numbers that you put in front of each chemical formula that represents the reactants and products in the <em>chemical equation</em>. They indicate the mole ratio in which the elements or compounds react to form the products, as per the chemical equation.
See an example:
- Word equation: hydrogen and oxygen produce water
- Chemical (skeleton) equation: H₂ (g) + O₂(g) → H₂O (g)
This equation is not balanced: the number of atoms of oxygenin the reactant side is 2 while the number of atoms of oxygen isn the product side is 1. In order to balance the equation you need to add some coefficients.
When no coefficients are shown it is understood that the coefficient is 1.
- Balanced chemical equation: 2H₂ (g) + O₂(g) → 2H₂O (g)
The coefficients 2 in front of H₂ and 1 (understood) in front of O₂, in the reactant side, and 2 in front of H₂O, in the product side, balance the equation.
Those coefficients mean that the 2 molecules (or mole of molecules) of H₂ react with 1 molecule (or mole of molecules) of O₂ to form 2 molecules (or moles) of H₂O (product side).
That is the mole ratio: 2 H₂ : 1 O₂ : 2 H₂O.
Notice that, in spite of the aboslute numbers may change, the mole ratio is unique for any chemical reaction. For example 4 : 2 : 4 is the same ratio that 2 : 1 : 2, or 8 : 4 : 8, but the most common practice is to use the most simple form of the ratio, i.e. 2: 1: 2.
If there were an element above fluorine, its state would be a gas. This is because fluorine is located in the non-metal section of the periodic table which can all be found as a gas at room temperature.
<span>My only guess is obtain a metal and heat it in a boiling water bath (of known temperature) this will be your initial temperature. Now obtain a calorimeter cup with water of known temperature as well. Place the metal into the calorimeter cup and record the temperature after 5 minutes. You now have delta T, mass of the metal, and Q. Solve for C.
Hope this helps xox :)</span>