Answer:
Option C. 13.5 atm
Explanation:
From the question given above, the following data were obtained:
Pressure of Neon (Pₙₑ) = 4.1 atm
Pressure of Argon (Pₐᵣ) = 3.2 atm
Pressure of nitrogen (Pₙ₂) = 6.2 atm
Total pressure (Pₜ) =?
The total pressure in the container can be obtained by adding the pressure of the individual gases. This is illustrated below:
Pₜ = Pₙₑ + Pₐᵣ + Pₙ₂
Pₜ = 4.1 + 3.2 + 6.2
Pₜ = 13.5 atm
Therefore, the total pressure in the container is 13.5 atm
The following compounds and the number and type of ions are as follows:
Gold and chloride:
Gold (III) = Au 3+
Chloride = Cl 1-
Calcium and Sulfate:
Calcium Sulfate:
Calcium = Ca 2+
Sulfate = SO4 2-
Magnesium and Hydroxide
Magnesium Hydroxide: Mg(OH)2
Magnesium: Mg 2+
Hydroxide: (OH) 1-
Answer:
O = 94.117%
H = 5.882%
Explanation:
Hydrogen peroxide (H202) Molar Mass = 34g
OH 1- 17g/mol
H 1+ = 1g/mol
O = 16g/mol
2 Grams H
32 grams O
Percentage composition of Hydrogen peroxide
O = 32/34 = 94.117%
H = 2/34 = 5.882%
Answer:
I have the same thing it's hard
<u>Answer:</u> The Gibbs free energy of the reaction is 21.32 kJ/mol
<u>Explanation:</u>
The chemical equation follows:

The equation used to Gibbs free energy of the reaction follows:

where,
= free energy of the reaction
= standard Gibbs free energy = 29.7 kJ/mol = 29700 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314J/K mol
T = Temperature = ![37^oC=[273+37]K=310K](https://tex.z-dn.net/?f=37%5EoC%3D%5B273%2B37%5DK%3D310K)
= Ratio of concentration of products and reactants = ![\frac{\text{[Oxaloacetate]}[NADH]}{\text{[Malate]}[NAD^+]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7B%5BOxaloacetate%5D%7D%5BNADH%5D%7D%7B%5Ctext%7B%5BMalate%5D%7D%5BNAD%5E%2B%5D%7D)
![\text{[Oxaloacetate]}=0.130mM](https://tex.z-dn.net/?f=%5Ctext%7B%5BOxaloacetate%5D%7D%3D0.130mM)
![[NADH]=2.0\times 10^2mM](https://tex.z-dn.net/?f=%5BNADH%5D%3D2.0%5Ctimes%2010%5E2mM)
![\text{[Malate]}=1.37mM](https://tex.z-dn.net/?f=%5Ctext%7B%5BMalate%5D%7D%3D1.37mM)
![[NAD^+]=490mM](https://tex.z-dn.net/?f=%5BNAD%5E%2B%5D%3D490mM)
Putting values in above expression, we get:

Hence, the Gibbs free energy of the reaction is 21.32 kJ/mol