Any type of medical scientist works.
Any substance made out of iotas, that has mass and possesses space. Matter ought not be mistaken for mass, as the two are not the same in current material science. Matter is itself a physical substance of which frameworks might be formed, while mass isn't a substance but instead a quantitative property of issue and different substances or frameworks. While there are diverse perspectives on what ought to be viewed as issue, the mass of a substance or framework is the same regardless of any such meaning of issue. Another distinction is that issue has an "inverse" called antimatter, however mass has no inverse—there is no such thing as "hostile to mass" or negative mass. Antimatter has the same (i.e. positive) mass property as its typical issue partner.
Scientists at NatureWorks of Minnetonka, Minnesota, makes food containers from a polymer called polylactic acid, made using microorganisms to convert cornstarch into a resin. The resulting polymer is used to replace rigid petroleum-based plastic used in yogurt containers and water bottles.
Answer:
29.92grams of PbSO4
Explanation:
lead (iV) oxide = PbO2 = Molar mass: 239.2 g/mol
lead (ll) sulfate = PbSO4 = Molar mass: 303.26 g/mol
PbO2 = PbSO4
1:1 ratio
Pb = Lead
Lead has an oxidation number of 4+
O = Oxygen
Oxygen has an oxidation number of 2-
PbO2 + 4H+ + SO4 2- + 2e- = PbSO4(s) + 2H2O
Ok so the above would be the likely complete reaction, though we don't really need this as we already know the ratio is 1:1.
23.6g of PbO2
23.6/239.2 = 0.09866 Moles of PbO2
Since we have a 1:1 ratio we know that the same number of moles of PbSO4 are produced and since we know the molar mass it's simply molar mass multiplied by number of moles.
303.26 x 0.09866 = 29.92grams of PbSO4