Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
 
        
             
        
        
        
Answer:
D. The temperature does not change during a phase change because the average kinetic energy does not change. Therefore, the potential energy in the bonds between molecules must change.
Explanation:
When there is a change of state (for example, from solid into a liquid, as in this example), when energy is added to the system, the temperature of the substance does not change.
The reason for this is that the energy supplied is no longer used to increase the average kinetic energy of the particle, but instead it is used to break the bonds between the different particles/molecules. For instance, since in this case the substance is changing from solid to liquid, all the energy supplied during the phase change is used to break the bonds between the molecules of the solid: when the process is done, all the molecules will be free to slide past each other, and the substance has turned completely into a liquid.
The bonds between molecules store potential energy: therefore, this means that the energy supplied during the phase change is not used to change the kinetic energy, but to change the potential energy in the bonds between the molecules.
 
        
                    
             
        
        
        
Answer:
300 m/s
Explanation:
The difference in time between the two bangs is 1 s.
Thus;
t2 - t1 = 1
We know that distance/time = speed.
Thus;
d2/v - d1/v = 1
Multiply through by v to get;
d2 - d1 = v
Where v is speed of sound in air.
d1 = 350 m
d2 = (150 × 2) + 350 = 650 m
Thus;
v = d2 - d1 = 650 - 350 = 300 m/s
 
        
             
        
        
        
Water vapor clouds that are breaking out of Europe’s surface, water is the basis of life so this would support the idea that there is life
        
             
        
        
        
The mass of the aeroplane is 300,000 kg.
<h3>What is Newton's second law of motion?</h3>
It states that the force F is directly proportional to the acceleration a of the body and its mass.
The law is represented as 
F =ma
where acceleration a = velocity change v / time interval t
Given is the aeroplane lands at a speed of 80 m/s. After landing, the aeroplane takes 28 s to decelerate to a speed of 10 m/s. The mean resultant force on the aeroplane as it decelerates is 750 000 N.
The force expression will be
F = mv/t
Substitute the values and we have
750000 = m x  (80 -10)/ 28
750,000 = m x 2.5
m = 300,000 kg
Thus, the mass of the aeroplane is 300,000 kg.
Learn more about Newton's second law of motion.
brainly.com/question/13447525
#SPJ1