Answer:
The focal length of eye piece is 6.52 cm.
Explanation:
Given that,
Angular Magnification of the microscope M = -46
the distance between the lens in microscope L= 16 cm
The focal length of objective f₀ = 1.5 cm
Normal near point N = 25 cm
Have to find focal length of eye piece f ₙ =?
The angular magnification is given by
M ≈ - (L-fₙ)N/f₀fₙ
Rearranging for fₙ
fₙ =L(1 - Mf₀/N)⁺¹
=18/2.76
fₙ = 6.52 cm
The focal length of eye piece is 6.52 cm.
<h3><u>Answer</u>;</h3>
B. When actin filaments are pulled toward the center of the sarcomere, the fiber shortens.
<h3><u>Explanation;</u></h3>
- <em><u>The events of muscle fiber shortening occurs with in the sacromeres in the fibers. </u></em>
- <em><u>Contraction of striated muscle fibers takes place as the sacromeres shorten as myosin heads pull on the actin filaments.</u></em>
- <em><u>Filament movement starts at the region or zone where thin and thick filaments overlap. </u></em>
- <em><u>Myofibril contains many sacromeres along its length and thuse myofibrils and muscle cells contract as the sacromeres contract.</u></em>
Answer:
4.6 years
Explanation:
This is solved using Kepler's third law which says:

Where
T = Orbital period of the planet (in seconds)
a = Distance from the star (in meters)
G = Gravitational constant
M = Mass of the parent star (in kg)
From the information given



We put this into Kepler's law and get:

This when converted to years is 4.6 years.
The wavelength

of the wave is 160 m, and this is the distance between two consecutive crests. The boat is located at a crest of the wave, this means that the first trough is located 80 meters from the boat (because the distance between a crest and a trough is half the wavelength).
The speed of the wave is

so the time the boat takes to reach the first trough is