1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
14

Which of the following is an open circuit?

Physics
1 answer:
Gnom [1K]3 years ago
8 0

Answer:

can u sent a pic or something

Explanation:

plz needed a clear info

You might be interested in
Which of the following are the advantages of a DBMS (database management system)?
soldier1979 [14.2K]

Answer:

A

Explanation:

6 0
3 years ago
Sayid made a chart listing data of two colliding objects. A 5-column table titled Collision: Two Objects Stick Together with 2 r
Alborosie

Answer:

6 m/s is the missing final velocity

Explanation:

From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).

Object X had a mass of 300 kg, while object Y had a mass of 100 kg.

Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.

We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.

In numbers, and calling P_{xi} the initial momentum of object X and P_{yi} the initial momentum of object Y, we can derive the total initial momentum of the system: P_{total}_i=P_{xi}+P_{yi}= 300*10 \frac{kg*m}{s} -100*6\frac{kg*m}{s} =\\=(3000-600 )\frac{kg*m}{s} =2400 \frac{kg*m}{s}

Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):

Final momentum of the system: M * v_f=400kg * v_f

We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

2400 \frac{kg*m}{s} =400kg*v_f\\\frac{2400}{400} \frac{m}{s} =v_f\\v_f=6 \frac{m}{s}

7 0
3 years ago
Read 2 more answers
LOTS OF BRAINLIST WILL BE GIVING TO THOSE WHO HELP
Alex_Xolod [135]
You know you can skip those and just submit them, they don’t even check them
4 0
2 years ago
Read 2 more answers
A sample of n2 gas occupies a volume of 746 ml at stp. What volume would n2 gas occupy at 155 ◦c at a pressure of 368 torr?
musickatia [10]

Answer:

2.41 L

Explanation:

We can solve the problem by using the ideal gas equation, which can be rewritten as:

\frac{p_1 V_1}{T_1}=\frac{p_2 V_2}{T_2}

where we have:

p_1 = 1.01\cdot 10^5 Pa (initial pressure is stp pressure)

V_1 = 746 mL = 0.746 L = 7.46\cdot 10^{-4}m^3 is the initial volume

T_1 = 0^{\circ}=273 K is the initial temperature (stp temperature)

p_2 = 368 torr = 4.9\cdot 10^4 Pa is the final pressure

V_2 = ? is the final volume

T=155^{\circ}=428 K is the final temperature

By substituting the numbers inside the formula and solving for V2, we find the final volume:

V_2 = \frac{p_1 V_1 T_2}{T_1 p_2}=\frac{(1.01\cdot 10^5 Pa)(7.46\cdot 10^{-4} m^3)(428 K)}{(273 K)(4.9\cdot 10^4 Pa)}=2.41\cdot 10^{-3} m^3

which corresponds to 2.41 L.

7 0
3 years ago
98 Points and brainlyest for 5 Science questions please I need it doe before 2:30 ET!!!
Marina CMI [18]
Picture #1:
GPE = (mass) x (gravity) x (height)
GPE = (2 kg) x (9.8 m/s²) x (40 m) = 784 joules

KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (5 m/s)²
KE = (1 kg) (25 m²/s²)  =  25 joules

Picture #2:
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (10 m/s)²
KE = (1 kg) (100 m²/s²)  =  100 joules

Picture #3:
GPE = (mass) x (gravity) x (height)
GPE = (20 kg) x (9.8 m/s²) x (2 m) = 392 joules

KE = (1/2) (mass) (speed²)
KE = (1/2) (20 kg) (5 m/s)²
KE = (10 kg) (25 m²/s²)  =  250 joules

Picture #4:
GPE = (mass) x (gravity) x (height)
98 joules = (1 kg) x (9.8 m/s²) x (height)
Height = (98 joules) / (1 kg x 9.8 m/s²)
Height = 10 meters

Picture #5:
GPE = (mass) x (gravity) x (height)
39,200 Joules = (mass) x (9.8 m/s²) x (20 m)
Mass = (39,200 joules) / (9.8 m/s² x 20 m)
Mass = 200 kg

5 0
3 years ago
Other questions:
  • How much heat (in kJ) is released when 15.0 L of CO at 85°C and 112 kPa reacts with 14.4 L of H2 at 75°C and 744 torr?
    10·1 answer
  • How much resistance is required to limit the current to 1.5 mA if the potential drop across the resistor is 6V
    8·1 answer
  • Physical science help
    15·2 answers
  • A 20-ton truck collides with a 1500-lb car and causes a lot of damage to the car. During the collision:
    9·1 answer
  • Between what depths does Earth's temperature increase the slowest?
    14·1 answer
  • An Earth satellite needs to have its orbit changed so the new orbit will be twice as far from the center of Earth as the origina
    7·1 answer
  • X(????) = 5.0???? 2 − 4.0???? 3 m.
    15·1 answer
  • Where is the us constitution does it mention anything about local governments
    8·1 answer
  • QUESTION 13
    6·1 answer
  • Why does Mars not have an electric field and why
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!