The formula is:
v = v o + a t
6 = 10 + 3 * a
3 a = 10 - 6
a = 4 : 3
a = - 1.33 m/s² ( because the car slows down )
Answer: The average acceleration of the car is - 1.33 m/s²
Answer:
not work
Explanation:
in a series circuit, everything meaning the electrons are flowing on one path, therefore, it wouldn continue to work.
The total energy equation would be Kinetic energy+Potential energy
Complete Question
Planet D has a semi-major axis = 60 AU and an orbital period of 18.164 days. A piece of rocky debris in space has a semi major axis of 45.0 AU. What is its orbital period?
Answer:
The value is
Explanation:
From the question we are told that
The semi - major axis of the rocky debris 
The semi - major axis of Planet D is 
The orbital period of planet D is 
Generally from Kepler third law

Here T is the orbital period while a is the semi major axis
So

=>
=> ![T_R = 18.164 * [\frac{ 45}{60} ]^{\frac{3}{2} }](https://tex.z-dn.net/?f=T_R%20%20%3D%2018.164%20%20%2A%20%20%5B%5Cfrac%7B%2045%7D%7B60%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D)
=>
Answer:
Check the explanation
Explanation:
When we have an object in periodic motion, the amplitude will be the maximum displacement from equilibrium. Take for example, when there’s a back and forth movement of a pendulum through its equilibrium point (straight down), then swings to a highest distance away from the center. This distance will be represented as the amplitude, A. The full range of the pendulum has a magnitude of 2A.
position = amplitude x sine function(angular frequency x time + phase difference)
x = A sin(ωt + ϕ)
x = displacement (m)
A = amplitude (m)
ω = angular frequency (radians/s)
t = time (s)
ϕ = phase shift (radians)
Kindly check the attached image below to see the step by step explanation to the question above.