Answer:
The speed of water must be expelled at 6.06 m/s
Explanation:
Neglecting any drag effects of the surrounding water we can assume the linear momentum in this case is conserves, that is, the total initial momentum of the octopus and the water kept in it cavity should be equal to the total final linear momentum. That's known as conservation of momentum, mathematically expressed as:

with Pi the total initial momentum and Pf the final total momentum. The total momentum is the sum of the momentums of the individual objects, in our case the octopus and the mass of water that will be expelled:

with Po the momentum of the octopus and Pw the momentum of expelled water. Linear momentum is defined as mass times velocity:

Note that initially the octopus has the water in its cavity and both are at rest before it sees the predator so
:

We should find the final velocity of water if the final velocity of the octopus is 2.70 m/s, solving for
:


The minus sign indicates the velocity of the water is opposite the velocity of the octopus.
The answer is either C or D.
The main reason why bells are made up of metals instead of wood is because metal is much more dense than wood, meaning that it resonates at much stronger frequencies. Wood has far too much air in it to make loud noises when struck.
Answer: b. The combination is a mixture because the substances can be separated
Explanation: Based on the facts presented above, the combination of both both substances can be referred to as a mixture due to the following:
A mixture is obtained when two or more substances or materials are combined without a chemical reaction. This is observed when Jalen combined substance 1 and 2 with only one of the substances becoming visible after the combination.
The other reason is that, a mixture can be separated back into its original constituent, this is evident when the combination was filtered with only substance 2 going through the filter and substance 1 remaining in the filter
Answer:
True
Explanation:
An electric field is a region around a charged particle or object within which a force would be exerted on other charged particles or objects.