1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
7

If potential energy at point A is 12 joules, what is the potential energy at D?

Physics
1 answer:
Irina-Kira [14]3 years ago
5 0

Answer:

In D: 3J

Explanation:

Potential energy: Ep=mgh where m is the mass, h altitude.

In point A: h=20cm=0.2m

Epa=12=0.2×mg. Thus mg=12/0.2=60N

For point D: hd=5cm=0.05m

Epd=mg×0.05=60×0.05=3J

You might be interested in
When force is applied to a breaker bar the torque can be calculated by multiplying the length of the lever by the?
Nimfa-mama [501]

When a force applied to a breaker bar the torque can be calculated by multiplying the<u> length of the lever</u> by the tangential component of force on the lever.

<h3>What is torque?</h3>

Torque is the <u>rotating equivalent</u> of force in physics and mechanics. Depending on the subject of study, it is also known as the moment, moment of force, rotating force, or turning effect. It illustrates how a force can cause a change in the body's rotational motion.

Torque is given by the formula :

                          α = r x F ( bold letters represent vector quantities)

The S.I. unit for torque is :  N - m ( Newton - meter)

<h3>How do we define 1 N-m of torque?</h3>

The newton-metre is a torque unit (also known as a moment) in the SI system. The torque produced by a one newton force applied <u>perpendicularly to the end of a one metre long</u> moment arm is known as a newton-metre.

To learn more about torque:

brainly.com/question/14970645

#SPJ4

5 0
2 years ago
After observing a moth that is camouflaged against dark-colored bark, a scientist asks a question. The scientist discovers that
Rasek [7]
Because of how it's worded the answer would most likely be number four                                                                                       

6 0
3 years ago
Read 2 more answers
How can shorter string produce more fundamental frequency in two string of different length?​
Nana76 [90]

Answer:

Shorter string produces more frequency in two different strings because the equation for frequency is velocity/wavelength , this means that a shorter string creates a shorter wavelength which essentially increases the total frequency produced

5 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Calculate the pressure on a man’s foot when a woman who weighs 520 N steps on his foot with her heel which has an area of 0.001
Vinvika [58]

Answer:

520000  or 520000 pa

Force = 520N

Area of contact = 0.001

Pressure: 520000 or 520000

6 0
3 years ago
Other questions:
  • Phase, color, and ductility are all examples of what type of property?
    7·1 answer
  • Which of the following confirms that gravitational mass and inertial mass are equivalent?
    11·1 answer
  • How many joules of work are done on a box when a force of 25 N pushes it 3 m?
    12·1 answer
  • A sinusoidal traveling wave is generated on a string by an oscillating source that completes 116 cycles per minute. What is the
    9·1 answer
  • How do you make an electromagnet
    15·2 answers
  • A disk has a radius of 30 cm and a mass of 0.3 kg and is turning at 3.0 rev/s. A trickle of sand falls onto the disk at a distan
    13·1 answer
  • An atom is chemically stable when it’s outer_____ is completely filled with _____.
    7·1 answer
  • Only about 50% of the solar energy directed toward Earth penetrates directly to the surface. Explain what happens to the rest of
    6·2 answers
  • When applied behavior analysis is used properly what happens???​
    11·1 answer
  • Describe how we know the plates once formed a supercontinent and how we know this.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!