The answer to this question would be: 2 mol
To answer this question, you need to know the molecular weight of Potassium. Molecular weight determines how much the weight of 1 mol of a molecule has.
Potassium or Kalium molecular weight is 39.1 gram/mol. Then, 78.20gram of potassium should be: 78.20g/ (39.1g/mol)= 2 mol
In order to balance an equation, we apply the principle of conservation of mass, which states that mass can neither be created nor destroyed. Therefore, the mass of an element before and after a reaction remains constant. Here, the balanced equation becomes:
4Al + 3O₂ → 2Al₂O₃
The coefficients are 4, 3 and 2.
<span>By definition, the first ionization energy is the energy required to remove the most loosely held electron from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of 1+. </span><span />
Answer:
So, you're dealing with a sample of cobalt-60. You know that cobalt-60 has a nuclear half-life of
5.30
years, and are interested in finding how many grams of the sample would remain after
1.00
year and
10.0
years, respectively.
A radioactive isotope's half-life tells you how much time is needed for an initial sample to be halved.
If you start with an initial sample
A
0
, then you can say that you will be left with
A
0
2
→
after one half-life passes;
A
0
2
⋅
1
2
=
A
0
4
→
after two half-lives pass;
A
0
4
⋅
1
2
=
A
0
8
→
after three half-lives pass;
A
0
8
⋅
1
2
=
A
0
16
→
after four half-lives pass;
⋮
Explanation:
now i know the answer