Answer:
Monera
Explanation:
This organism is only bacteria (bacilli bacteria). They are simple unicellular organism; they have no nucleus. They barely have organelles. These organism in the garbage are heterotrophic /saprophytic and cause the composition of the organic molecules (such as the discarded foods).
Answer:
39.998
Explanation:
Hello, have a periodic table handy!
Molar mass is the molecular weight of a compound; sum of all of the mass in grams (from the periodic table) from each and specific atom.
In the periodic table, the molecular weight of an atom is usually shown on the bottom of the element.
In NaOH, there are three atoms in that compound. Na (sodium), O (oxygen), and H (hydrogen).
For Na, the molecular weight is 22.99
For O, the molecular weight is 16.00
For H, the molecular weight is 1.008.
Add all of those values up together to get the molar mass of NaOH being 39.998
Covalent Bond Name :N6Cl10
Explanation:
- Covalent compounds are named by using numerical prefixes to identify the number of atoms in the molecule. For example Carbon Dioxide CO2 and Carbon Monoxide CO . ... Drop the double vowel for the prefix and the element of the second element in the compound.
- The three types as mentioned in the other answers are polar covalent, nonpolar covalent, and coordinate covalent. The first, polar covalent, is formed between two nonmetals that have a difference in electronegativity. They share their electron density unevenly.
- Examples of Covalent Bond: Water. An example is water. Water consists of a covalent bond containing hydrogen and oxygen bonding together to make H2O. ...Diamonds. A diamond is an example of Giant Covalent bond of carbon. A diamond has a giant molecular structure. ...Vulcanized rubber. Another example is vulcanized rubber.
- Covalent bonds are especially important since most carbon molecules interact primarily through covalent bonding. Covalent bonding allows molecules to share electrons with other molecules, creating long chains of compounds and allowing more complexity in life.
Answer:
146 g/mol → option b.
Explanation:
This is a problem about the freezing point depression. The formula for this colligative property is:
ΔT = Kf . m . i
We assume i = 1, so our compound is not electrolytic.
ΔT = Freezing T° of pure solvent - Freezing T° of solution = 1.02 °C
m = molality (mol of solute/kg of solvent)
We convert the grams of solvent (benzene) to kg → 250 g . 1 kg/1000 = 0.250 kg.
We replace → 1.02°C = 5.12°C/mol/kg . mol/ 0.250kg . 1
1.02°C / 5.12 mol/kg/°C = mol/ 0.250kg
0.19922 mol/kg = mol/ 0.250kg
mol = 0.19922 . 0.250kg → 0.0498 mol
molar mass = g/mol → 7.27 g / 0.0498mol = 146 g/mol