<span>This question asksyou to apply Hess's law.
You have to look for how to add up all the reaction so that you get the net equation as the combustion for benzene. The net reaction should look something like C6H6(l)+ O2 (g)-->CO2(g) +H2O(l). So, you need to add up the reaction in a way so that you can cancel H2 and C.
multiply 2 H2(g) + O2 (g) --> 2H2O(l) delta H= -572 kJ by 3
multiply C(s) + O2(g) --> CO2(g) delta H= -394 kJ by 12
multiply 6C(s) + 3 H2(g) --> C6H6(l) delta H= +49 kJ by 2 after reversing the equation.
Then,
6 H2(g) + 3O2 (g) --> 6H2O(l) delta H= -1716 kJ
12C(s) + 12O2(g) --> 12CO2(g) delta H= -4728 kJ
2C6H6(l) --> 12 C(s) + 6 H2(g) delta H= - 98 kJ
______________________________________...
2C6H6(l) + 16O2 (g)-->12CO2(g) + 6H2O(l) delta H= - 6542 kJ
I hope this helps and my answer is right.</span>
Answer:H2=11.4g
CH4=28.6g
Explanation:The complete combustion of the two gases can be represented by a balanced reaction below
1. CH4 +2O2___CO2+2H2O
2.2H2+O2___2H2O
Combining the two we have CH4 +2H2+3O2___
CO2+4H2O
Since the mixture contains 40gof CH4 and 2, therefore 20g of CH4 and 8g of H2 combines.
Calculated from their molecular Mass i.e CH4 12+4×2)=20 and 2H2= 2×2×2=8g
Mass of CH4=20/28×40=28.6g
2H2=8/28×40=11.4g
Answer:
Ca(NO3)2 has the highest boiling point ( option A)
Explanation:
Step 1: Data given
A. 1.25 M Ca(NO3)2
B. 1.25 M KNO3
C. 1.25 M CH3OH
D. 2.50 M C6H12O6
Step 2: Calculate highest boiling point
The boiling point depends on the van't Hoff factor
This shows the particles produced when the substance is dissolved. For non-electrolytes dissolved in water, the van' t Hoff factor is 1.
Ca(NO3)2 → Ca^2+ + 2NO3- → Van't Hoff factor = 3
KNO3 → K+ + NO3- → Van't Hoff factor = 2
CH3OH is a non-elektrolyte → Van't Hoff factor = 1
C6H12O6 is a non-elektrolyte → Van't Hoff factor = 1
Ca(NO3)2 has the highest boiling point
First find the mass of <span>solute:
Molar mass KNO</span>₃ = <span>101.1032 g/mol
mass = Molarity * molar mass * volume
mass = 0.800 * 101.1032 * 2.5
mass = 202.2064 g of KNO</span>₃
<span>To prepare 2.5 L (0800 M) of KNO3 solution, must weigh 202.2064 g of salt, dissolve in a Beker, transfer with the help of a funnel of transfer to a volumetric flask, complete with water up to the mark, capping the balloon and finally shake the solution to mix.</span>
hope this helps!
Solid
, Inorganic,
Naturally Orcurring,
Defintite
Chemical Compostion,
Definite Crystalline Structure
5 Physical Properties
Hardness,
Color,
Crystal Shape,
Streak