<u>Answer:</u>
Carbon and silicon both are tetravalent elements as compared to germanium, tin, and lead which are divalent.
That's because Ge, tin, and Pb show inert pair effect and has a greater nuclear effective charge on the 's' electrons due to poor shielding effect. .That's why these elements are not able to share their valence electrons while carbon and silicon does and show "catenation" which is the ability to form long chain molecules.
Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!
The most likely bond between element X and Iodine would be an ionic, or electrovalent, bond. Iodine has seven electrons in its outer shell, also known as the valence shell. To become perfectly stable, it needs only a single electron from another element. Hence no sharing of electron takes place (usually), which is the condition required for it to be covalent bonding. Hence it's most likely an ionic bonding/
My answer -
A nuclear reactor produces and controls the release of energy from splitting the atoms of uranium.
Uranium-fuelled nuclear power is a clean and efficient way of boiling
water to make steam which drives turbine generators. Except for the
reactor itself, a nuclear power station works like most coal or
gas-fired power stations.
P.S
Happy to help you have an AWESOME!!! day ^-^
So the question ask to separate the reaction of the element if your problem into its component half reaction and the best answer or the elements are the following: (Cs-> Cs+ + 1e-) x2 and <span>2e-+Cl2->2Cl-. I hope you are satisfied with my answer and feel free to ask for more </span>