The molar mass of CO2 is 44 grams per mole.
165 grams / 44 grams per mole of CO2 = 3.75 moles CO2
Using Avogadro’s law where 1 mole of substance equals
6.023 x 10^23 molecules
3.75 moles CO2 (6.023 x 10^23 molecules /mole) = 2.26 x 10^24 molecules CO2
Explanation:
The two half equations are;
3e + HNO3 → NO
S→ H2SO4 + 6e
When balancing half equations, we have to make sure the number of electrons gained is equal to the number of electrons lost.
<em>Which factor will you use for the top equation?</em>
We multiply by 2 to make the number of electrons = 6e
<em>Which factor will you use for the bottom equation?</em>
We multiply by 1 to make the number of electrons = 6e
A single-displacement reaction, also known as asingle-replacement reaction, is a type of chemicalreaction<span> where an element reacts with a compound and takes the place of another element in that compound. This type of </span>reaction<span> is typically pictured like this: Here, A replaces B in the compound BC.</span>
Hey there!:
density = 3.51 g/cm³
Volume = 0.0270 cm³
Therefore:
D = m / V
3.51 = m / 0.0270
m = 3.51 * 0.0270
m = 0.09477 g
Answer: 118.5 grams
Explanation:
Molarity is defined as the number of moles of solute dissolved per liter of the solution.

where,
n= moles of solute
= volume of solution in ml = 500 ml

moles = 0.75
moles of solute =
0.75 =
mass of
= 118.5 grams
Thus mass of
needed to prepare 500 mL of this solution iis 118.5 grams