1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
14

Suppose monthly rental prices for a one-bedroom apartment in a large city has a distribution that is skewed to the right with a

population mean of $880 and a standard deviation of $50.
(a) Suppose a one-bedroom rental listing in this large city is selected at random. What can be said about the probability that the listed rent price will be at least $930?
(b) Suppose a random sample 30 one-bedroom rental listing in this large city will be selected, the rent price will be recorded for each listing, and the sample mean rent price will be computed. What can be said about the probability that the sample mean rent price will be greater than $900?
Mathematics
1 answer:
omeli [17]3 years ago
8 0

Answer:

a) Nothing, beause the distribution of the monthly rental prices are not normal.

b) 1.43% probability that the sample mean rent price will be greater than $900

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a random variable X, with mean \mu and standard deviation \sigma, the sample means with size n of at least 30 can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}

(a) Suppose a one-bedroom rental listing in this large city is selected at random. What can be said about the probability that the listed rent price will be at least $930?

Nothing, beause the distribution of the monthly rental prices are not normal.

(b) Suppose a random sample 30 one-bedroom rental listing in this large city will be selected, the rent price will be recorded for each listing, and the sample mean rent price will be computed. What can be said about the probability that the sample mean rent price will be greater than $900?

Now we can apply the Central Limit Theorem.

\mu = 880, \sigma = 50, n = 30, s = \frac{50}{\sqrt{30}} = 9.1287

This probability is 1 subtracted by the pvalue of Z when X = 900.

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{900 - 880}{9.1287}

Z = 2.19

Z = 2.19 has a pvalue of 0.9857

1 - 0.9857 = 0.0143

1.43% probability that the sample mean rent price will be greater than $900

You might be interested in
Can anybody help me please
Sliva [168]

Hello, your answer would be (-5, 5)

3 0
3 years ago
The science club advisor expects that between 42 and 49 students will attend Science Club field trip. The school allows $5.50 pe
baherus [9]

Answer:

$269.50

Step-by-step explanation:

Between 42-49

So, you have to assume 49 students will arrive, better to have more and have left overs than get less and not find kids.

As for math you just do 49 x 5.50 = 269.5

Finally that measn the budget for the food is $269.50

8 0
3 years ago
Find the surface area of the regular pyramids. Round your answer to the nearest tenth.
katrin2010 [14]

Answer:

S.A = 147.35 cm²

Step-by-step explanation:

Surface area of the triangular pyramid = base area + ½(perimeter of base*slant height)

Base area = ½*bh

b = 7 cm

h = 6.1 cm

Base area = ½*7*6.1 = 21.35 cm²

Perimeter of triangular base = 7 + 7 + 7 = 21 cm

slant height = 12 cm

Plug in the values into the equation

S.A = 21.35 + ½(21*12)

S.A = 21.35 + 126

S.A = 147.35 cm²

8 0
3 years ago
bro please help me ill give brainliest to the first one to answer correctly. its for some iready assessment
aleksklad [387]
Answer : B


Explanation : trust me bro
8 0
3 years ago
Read 2 more answers
If you have 2/3 of butter but you need 4/6 how much more butter do you need
dmitriy555 [2]

Answer:

You do not need any more butter because when you divide 4/6 by 2 it gives 2/3

6 0
3 years ago
Other questions:
  • The table shows how many of
    8·1 answer
  • If (42)^p = 41^4, what is the value of p?
    7·1 answer
  • Least to greatest. <br> -5, 1 1⁄5, -5 3⁄4, 5⁄12
    6·1 answer
  • Can somebody please help?
    9·1 answer
  • on Serena's 10th birthday her mom was 3 times her age.How old will Serena and her mom be when her mom's age times 0.5 equals Ser
    10·2 answers
  • Let C represent the cost in dollars and R represent the revenue in dollars. What is the break-even point? Use a table to help if
    13·1 answer
  • A tangerine juice container is in the shape of a rectangular prism. The width is 26
    14·1 answer
  • Find the least common multiple of 2, 8 and 20.
    12·2 answers
  • I will give brinlyest
    6·2 answers
  • Help please ! will give brainle &lt;3
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!