Answer:
A. respiration.
Explanation:
Cellular respiration can be defined as a series of metabolic reactions that typically occur in cells so as to produce energy in the form of adenosine triphosphate (ATP). During cellular respiration, high energy intermediates are created that can then be oxidized to make adenosine triphosphate (ATP). Therefore, the intermediary products are produced at the glycolysis and citric acid cycle stage.
Additionally, mitochondria provides all the energy required in the cell by transforming energy forms through series of chemical reactions; breaking down of glucose into Adenosine Triphosphate (ATP) used for providing energy for cellular activities in the body of living organisms.
Basically, oxygen goes into the body of a living organism such as plants, humans and animals when they breathe while glucose is absorbed by the body when they eat.
Hence, the conversion of sugar to energy in the presence of oxygen is respiration.
true if you are refering to the desing of the experimnt as it does identify the variable
Answer:
The second one a part of it heats up Earth's land and water equally.
Explanation:
Hope this help!!!
Answer:
Therefore, we need an invert, and a rectifier, along with the transformer to do the job.
Explanation:
A transformer, alone, can not be used to convert a DC voltage to another DC voltage. If we apply a DC voltage to the primary coil of the transformer, it will act as short circuit due to low resistance. It will cause overflow of current through winding, resulting in overheating pf the transformer.
Hence, the transformer only take AC voltage as an input, and converts it to another AC voltage. So, the output voltage of a transformer is also AC voltage.
So, in order to convert a 6 V DC to 1.5 V DC we need an inverter to convert 6 V DC to AC, then a step down transformer to convert it to 1.5 V AC, and finally a rectifier to convert 1.5 V AC to 1.5 V DC.
<u>Therefore, we need an invert, and a rectifier, along with the transformer to do the job.</u>
If net external force acting on the system is zero, momentum is conserved. That means, initial and final momentum are same → total momentum of the system is zero.