Answer:
No. Because it would correspond to zero Instantaneous acceleration.
Explanation:
hope this helps
Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.
If you go to high you’ll run out of oxygen and possibly be blown off due to high winds.
Sound waves travel faster through <em>solids</em> than they do through gases or liquids. <em>(C) </em>They don't travel through vacuum at all.
Example:
Speed of sound in normal air . . . around 340 m/s
Speed of sound in water . . . around 1,480 m/s
Speed of sound in iron . . . around 5,120 m/s
The answer is C. The mass of the platinum sample is greater than the mass of the lead sample. As I explained in a previous answer, if they are the same volume, but one is heavier, then it must be more dense. In this particular example, the platinum is more dense than the lead, and therefore has more mass.