The internal energy of the gas is 49,200 J
Explanation:
The internal energy of a diatomic gas, such as
, is given by

where
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
For the gas in this problem, we have:
n = 4.50 (number of moles)
R = 8.31 J/(mol·K) (gas constant)
(absolute temperature)
Substituting, we find:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
In the conservation of mass, mass is never created or destroyed in chemical reactions in the same way water is not created or destroyed it is only transferred from one form to another and its mass is always conserved.
Answer:
Explanation:
The apple also exerts an equal and opposite force on the earth but earth does not move because the mass of apple is very small,due to which the gravitational force produces a large acceleration in it (a=F/m) and we can see the apple falling towards the earth but the mass of earth is very large,the same gravitational .
- One common use of a convex mirror is as shaving mirror.
- One common use of convex mirror is as rear-view mirrors in automobiles vehicles.
<h3>What is a
concave mirror?</h3>
A concave mirror is also referred to as a converging mirror and it can be defined as a type of mirror that is designed and developed with a reflective surface that is typically curved inward and away from the source of light.
Basically, one common use of a convex mirror include the following:
<h3>What is a
convex mirror?</h3>
A convex mirror is also referred to as a diverging mirror and it can be defined as a type of mirror that is designed and developed with a reflective surface that typically bulges outward toward the source of light.
Basically, one common use of convex mirror is as rear-view mirrors in automobiles vehicles.
Read more on convex mirror here: brainly.com/question/24175067
#SPJ1
The speed is changing its direction all the time. There
is an acceleration which changes the direction of the speed – that is called
centripetal acceleration. Only uniform linear motions are considered to have no
acceleration.
This is the general formula for acceleration
a = dv/dt
When calculating dv, you should keep in mind the change
in the velocity vector’s direction. You can easily see in a graph that with dt
tending to 0 (so the length of the arc covered is also tending to 0), the difference
between vectors Vf and V0 has a direction which is perpendicular to velocity
(the shorter the arc, the closest the angle is to 90 degrees).
There is a formula (which can be deducted from the
previous formula) which allows you to calculate the acceleration:
a = v^2/r
Let’s talk about the units:
v is in m/s
r is in m
so v^2/r
is in (m/s)^2/m = (m^2/s^2)/m = m/s^2
which is the same unit as dv/dt:
dv/dt = (m/s)/s= m/s^2