Answer:
Δτ = 50 N.m
Explanation:
The torque applied on an object is given by the product of the force applied on it and the perpendicular distance between the force and the axis of rotation of the object. That is:
τ = F r
where,
τ = Torque applied on the object
F = Force applied on it
r = distance from axis of rotation
<u>FOR HANDLE SIDE OF DOOR</u>:
τ₁ = F r₁
where,
τ₁ = Torque applied on the object = ?
F = Force applied on it = 100 N
r₁ = distance from axis of rotation = 1 m
Therefore,
τ₁ = (100 N)(1 m)
τ₁ = 100 N.m
<u></u>
<u>FOR MIDDLE OF DOOR</u>:
τ₂ = F r₂
where,
τ₂ = Torque applied on the object = ?
F = Force applied on it = 100 N
r₂ = distance from axis of rotation = 1 m/2 = 0.5 m
Therefore,
τ₂ = (100 N)(0.5 m)
τ₂ = 50 N.m
Now, the difference between the amount of torque in both cases is:
Δτ = τ₁ - τ₂
Δτ = 100 N.m - 50 N.m
<u>Δτ = 50 N.m</u>
2: Fusion occurs constantly on our sun.When nuclei fuse create a heavier nuclear and produce a little leftover energy in the process
Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3
the answer is A it is so easy question
When only ________ acts on an object's mechanical energy is conserved.
<u>Answer</u><u>:</u>
Momentum