A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.
Answer:
Option B) This minimizes the harmful side effects of the radiations
Explanation:
Half-life is the time taken for the decay of an radio-active atom in which it disintegrates such that it becomes half of its value at the beginning.... The nuclei should be in active mode for a longer duration sufficient for the treatment of the condition but these nuclei should have a sufficient shorter half life so that they don't get enough time to cause any damage to the health of the person other than treating the cause.
A shorter half life gives the assurance that the radiation after the treatment will leave the body without getting accumulated and cause harm to the body cells and other organs.
Answer: If x + y = a, xxy = b and x • a = 1 , then 2 (a~ - l)a- a x b (b2 ... xy-plane, then the vector in the same plane having projections
The farthest position the mouse reaches inside the tunnel is 4 meters into the tunnel.
From the graph,
The positions reached after,
5 s = 4 m
10 s = 2 m
20 s = 2 m
35 s = 3 m
40 s = 0 m
So the farthest position here is 4 m into the tunnel.
The rate of change of positions is displacement. So displacement will be change in initial and final positions divided by change in time.
s = Δx / Δt
Therefore, the farthest position the mouse reaches inside the tunnel is 4 meters into the tunnel.
To knw more about displacement
brainly.com/question/28609499
#SPJ1