Answer:
Both have the same amount of particles.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ particles.
This implies that 1 mole of Hydrogen contains 6.02×10²³ particles. Also, 1 mole of oxygen contains 6.02×10²³ particles.
Thus, 1 mole of Hydrogen and 1 mole of oxygen contains the same number of particles.
Answer:
This question appear incomplete
Explanation:
This question appear incomplete. However, fuel is formed through a natural phenomenon involving the conversion of large amount dead and decayed organisms (usually algae and zooplanktons) to combustible fuel through exposure to relatively high temperature and pressure (over millions of years) in the earth's crust. Thus, since this involves a sort of absorption of heat energy (from the earth's crust), it can be referred to be an endothermic reaction.
Answer:
Fe(CN)₂, FeCO₃, Pb(CN)₄, Pb(CO₃)₂
Explanation:
Cations (positively charged ions) can only form ionic bonds with anions (negatively charged ions). However, you can't just simply put one cation and one anion together to form a compound. Each compound needs to been neutral, or have an overall charge of 0. When cations and anions do not have charges that perfectly cancel, you need to modify the amount of each ion in the compound.
1.) Fe(CN)₂
-----> Fe²⁺ and CN⁻
-----> +2 + (-1) + (-1) = 0
2.) FeCO₃
-----> Fe²⁺ and CO₃²⁻
-----> +2 + (-2) = 0
3.) Pb(CN)₄
-----> Pb⁴⁺ and CN⁻
-----> +4 + (-1) + (-1) + (-1) + (-1) = 0
4.) Pb(CO₃)₂
-----> Pb⁴⁺ and CO₃²⁻
-----> +4 +(-2) + (-2) = 0
The balanced equation for the above reaction is as follows;
2HCl + K₂SO₃ ---> 2KCl + H₂O + SO₂
stoichiometry of HCl to SO₂ is 2:1
number of moles of HCl reacted - 15.0 g / 36.5 g/mol = 0.411 mol
according to molar ratio
number of SO₂ moles formed - 0.411 mol /2 = 0.206 mol
since we know the number of moles we can find volume using ideal gas law equation
PV = nRT
where
P - pressure - 1.35 atm x 101 325 Pa/atm = 136 789 Pa
V - volume
n - number of moles - 0.206 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 325 K
substituting values in the equation
136 789 Pa x V = 0.206 mol x 8.314 Jmol⁻¹K⁻¹ x 325 K
V = 4.07 L
volume of SO₂ formed is 4.07 L
From ideal gas equation PV = nRT, V/T = nR/P ==> V/T = constant. Therefore V1/T1 = V2/T2 ==> 7.8/698 = V2/308. V = 3.44L {TEMPERATURE IN KELVIN = 273 + 425 AND 35 = 698 AND 308}