Answer:
Explanation:
If the enzyme active site is complementary to the substrate conformation rather than to the transition state, it is unlikely that the reaction will proceed and release a product, because the enzyme-substrate complex will be tightly bound (ΔG will raise).
On the other hand, when the enzyme active site is complementary to the transition state, the substrate will not be tightly bound and will be more prone to be transformed into the product (<u>ΔG will be lowered</u>) and afterward, be released.
The weak interactions (non-covalent bonds) will stabilize the energy of the transition state and reduce its energy, thus lowering the activation energy). If the transition state is stable, it will form more easily and<u> the reaction will be more likely to proceed.</u>
<u />
Answer:
3.84 Ω
Explanation:
From the question given above, the following data were obtained:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = IV
Recall:
V = IR
Divide both side by R
I = V/R
P = V/R × V
P = V² / R
Where:
P => Electrical power
V => Voltage
I => Current
R => Resistance
With the above formula (i.e P = V²/R), we can calculate resistance as illustrated below:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = V²/R
150 = 24² / R
150 = 576 / R
Cross multiply
150 × R = 576
Divide both side by 150
R = 576 / 150
R = 3.84 Ω
Thus, the resistance is 3.84 Ω
It will belong to the metals because metals bond with nonmetals like chlorine to form ionic compounds
Answer:
The acceleration of the car is 9,19 m/s2
Explanation:
We use the formula: F=m x a---> a=F/m
a=21,6N/ 2,35kg 1N is 1kgxm/s2
a=21,6 kg x m/s2 x 2,35 kg
a=9,191489362 m/s2