C. The number of moles of H in 0.109 mole of N₂H₄ is 0.436 mole
D. The number of moles of H in 34 moles of C₁₀H₂₂ is 748 moles
<h3>C. How to determine the number of mole of H in 0.109 mole of N₂H₄</h3>
1 mole of N₂H₄ contains 4 moles of H
Therefore,
0.109 mole of N₂H₄ will contain = 0.109 × 4 = 0.436 mole of H
<h3>D. How to determine the number of mole of H in 34 mole of C₁₀H₂₂</h3>
1 mole of C₁₀H₂₂ contains 22 moles of H
Therefore,
34 mole of C₁₀H₂₂ will contain = 34 × 22 = 748 mole of H
Learn more about mole:
brainly.com/question/13314627
#SPJ1
Your answer to 2.5*22.56 is 56.25
Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.
Answer:
1) 0.18106 M is the molarity of the resulting solution.
2) 0.823 Molar is the molarity of the solution.
Explanation:
1) Volume of stock solution = 
Concentration of stock solution = 
Volume of stock solution after dilution = 
Concentration of stock solution after dilution = 
( dilution )

0.18106 M is the molarity of the resulting solution.
2)
Molarity of the solution is the moles of compound in 1 Liter solutions.

Mass of potassium permanganate = 13.0 g
Molar mass of potassium permangante = 158 g/mol
Volume of the solution = 100.00 mL = 0.100 L ( 1 mL=0.001 L)

0.823 Molar is the molarity of the solution.