Answer : The energy released by an electron in a mercury atom to produce a photon of this light must be, 
Explanation : Given,
Wavelength = 
conversion used : 
Formula used :

As, 
So, 
where,
= frequency
h = Planck's constant = 
= wavelength = 
c = speed of light = 
Now put all the given values in the above formula, we get:


Therefore, the energy released by an electron in a mercury atom to produce a photon of this light must be, 
<span>valence electrons is our answer cuz i am good at chemstry</span>
Explanation:
Pressure of a gas is the combined force with which the molecules bombard a unit area of the wall of the container.
1 atm = 760mmHg
= 760torr
= 101325Pa
= 101325Nm⁻²
1mmHg = 1torr
1Pa = 1Nm⁻²
101.325 kPa and 101,325 Pa are the same
1000Pa = 1kPa
101,325 Pa and 1 atm
1atm and 101.325 kPa
A. Zn²⁺
<h3>Further explanation</h3>
Given
Cations of several elements
Required
The least to be reduced
Solution
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe²⁺-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Fe³⁺-Ag-Pt-Au </em>
The electrode which is easier to reduce than the hydrogen (H2) electrode has a positive sign (E red= +) and is located to the right of the voltaic series (right of H)
The electrode which is easier to oxidize than the hydrogen (H2) electrode and is difficult to experience reduction has a negative sign (E red= -) and is located to the left of the voltaic series (left of H)
Or you can look at the standard reduction potential value of the metals in the answer options, and the most negative reduction E° value which will be difficult to reduce.
The Zn metal is located far left of the other metals in the answer choices, so it is the most difficult to reduce
Answer:
A chemical reaction that stores energy is called an endothermic reaction. More energy might be released as products form than the energy needed to break the reactants apart. This chemical reaction will release energy. In other words, it will be an exothermic reaction.
Explanation: