Answer:

Explanation:
Hello,
In this case, since hydrochloric acid and barium hydroxide are in a 2:1 molar ratio, for the neutralization, the following moles equality must be obeyed:

In such a way, in terms of molarities and volumes, we can compute the required volume of hydrochloric acid as shown below:

Besr regards.
It's adenosine triphosphate !
it has Penrose sugar and phosphate as backbone !
and nitrogenous base ... adenine.... in the middle !
Answer:
the correct answer is option 'b': More than
Explanation:
The 2 situations are represented in the attached figures below
When an object is placed in air it is acted upon by force of gravity of earth which is measured as weight of the object.
While as when any object is submerged partially or completely in any fluid the fluid exerts a force in upward direction and this force is known as force of buoyancy and it's magnitude is given by Archimedes law as equal to the weight of the fluid that the body displaces, hence the effective force in the downward direction direction thus the apparent weight of the object in water decreases.
Answer:
392g sulfuric acid are produced
Explanation:
Based on the balanced equation:
2HCl + Na2SO4 → 2NaCl + H2SO4
<em>2 moles of HCl produce 1 mole of sulfuric acid</em>
<em />
To solve the problem we need to find the moles of sulfuric acid produced based on the chemical equation. Then, using its molar mass -<em>Molar mass H2SO4 = 98g/mol- </em>we can find the mass of sulfuric acid produced:
<em>Moles sulfuric acid:</em>
8mol HCl * (1mol H2SO4 / 2mol HCl) = 4 mol H2SO4
<em>Mass sulfuric acid:</em>
4mol H2SO4 * (98g / mol) =
392g sulfuric acid are produced
The atomic number in an element is usually how many protons the element has. For example, Hydrogen has a 1 on top of the H (on the periodic table), therefore, Hydrogen has 1 proton. Oxygen has an 8 on top of the O (on the periodic table) so therefore, Oxygen has 8 protons.