Lowest common denominator-> 6
1/2 multiply both top and bottom by 3 to get it in sixths
1/6+3/6=4/6
4/6 simplifies to 2/3.
2/3 is the simplest form to your question.
since we know the endpoints of the circle, we know then that distance from one to another is really the diameter, and half of that is its radius.
we can also find the midpoint of those two endpoints and we'll be landing right on the center of the circle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-2-(-4)]^2+[-5-(-7)]^2}\implies d=\sqrt{(-2+4)^2+(-5+7)^2} \\\\\\ d=\sqrt{2^2+2^2}\implies d=\sqrt{2\cdot 2^2}\implies d=2\sqrt{2}~\hfill \stackrel{~\hfill radius}{\cfrac{2\sqrt{2}}{2}\implies\boxed{ \sqrt{2}}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-7%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-2-%28-4%29%5D%5E2%2B%5B-5-%28-7%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-2%2B4%29%5E2%2B%28-5%2B7%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B2%5E2%2B2%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B2%5Ccdot%202%5E2%7D%5Cimplies%20d%3D2%5Csqrt%7B2%7D~%5Chfill%20%5Cstackrel%7B~%5Chfill%20radius%7D%7B%5Ccfrac%7B2%5Csqrt%7B2%7D%7D%7B2%7D%5Cimplies%5Cboxed%7B%20%5Csqrt%7B2%7D%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{-2-4}{2}~~,~~\cfrac{-5-7}{2} \right)\implies \left( \cfrac{-6}{2}~,~\cfrac{-12}{2} \right)\implies \stackrel{center}{\boxed{(-3,-6)}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-7%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7B-2-4%7D%7B2%7D~~%2C~~%5Ccfrac%7B-5-7%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%20%5Ccfrac%7B-6%7D%7B2%7D~%2C~%5Ccfrac%7B-12%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cstackrel%7Bcenter%7D%7B%5Cboxed%7B%28-3%2C-6%29%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-3}{ h},\stackrel{-6}{ k})\qquad \qquad radius=\stackrel{\sqrt{2}}{ r} \\[2em] [x-(-3)]^2+[y-(-6)]^2=(\sqrt{2})^2\implies (x+3)^2+(y+6)^2=2](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Cqquad%20center~~%28%5Cstackrel%7B-3%7D%7B%20h%7D%2C%5Cstackrel%7B-6%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20radius%3D%5Cstackrel%7B%5Csqrt%7B2%7D%7D%7B%20r%7D%20%5C%5C%5B2em%5D%20%5Bx-%28-3%29%5D%5E2%2B%5By-%28-6%29%5D%5E2%3D%28%5Csqrt%7B2%7D%29%5E2%5Cimplies%20%28x%2B3%29%5E2%2B%28y%2B6%29%5E2%3D2)
Answer:
2x(x + 3)(2x - 1)
Step-by-step explanation:
Given
4x³ + 10x² - 6x ← factor out 2x from each term
= 2x(2x² + 5x - 3) ← factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 2 × - 3 = - 6 and sum = + 5
The factors are + 6 and - 1
Use these factors to split the x- term
2x² + 6x - x - 3 ( factor the first/second and third/fourth terms )
= 2x(x + 3) - 1(x + 3) ← factor out (x + 3) from each term
= (x + 3)(2x - 1)
Thus
4x³ + 10x² - 6x = 2x(x + 3)(2x - 1) ← in factored form
Answer:
D)The experimental probability is greater than the theoretical probability
Step-by-step explanation:
Given:
75 times a die is rolled out of 39 times it got 6
To Find :
Which statement is true?
Solution:
The theoretical probability is given by the ,
Pt=No.of favorable outcomes/Total outcomes
Here favorable is getting 6 on the die
so how many times we can get 6 =1 time
Total outcomes =6
Pt=1/6
Pt=0.1667
Now for
The experimental Probability ,
Pe=Number times that event occur /Total no of trails
Here 39 times we get 6 and total no trails are 75
Pe=39/75
Pe=0.52
Hence we can say that Pe>Pt.