Answer:
Geothermal energy is thermal energy generated and stored in the Earth.
Explanation:
Thermal energy is the energy that determines the temperature of matter. The geothermal energy of the Earth's crust originates from the original formation of the planet and from radioactive decay of materials.
Answer:
a) ![(Qa*g*Vb)-(Qh*Vb*g)=(Qh*Vb*a)\\where \\g=gravity [m/s^2]\\a=acceleration [m/s^2]](https://tex.z-dn.net/?f=%28Qa%2Ag%2AVb%29-%28Qh%2AVb%2Ag%29%3D%28Qh%2AVb%2Aa%29%5C%5Cwhere%20%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5Ca%3Dacceleration%20%5Bm%2Fs%5E2%5D)
b) a = 19.61[m/s^2]
Explanation:
The total mass of the balloon is:
![massball=densityheli*volumeheli\\\\massball=0.41 [kg/m^3]*0.048[m^3]\\massball=0.01968[kg]\\\\](https://tex.z-dn.net/?f=massball%3Ddensityheli%2Avolumeheli%5C%5C%5C%5Cmassball%3D0.41%20%5Bkg%2Fm%5E3%5D%2A0.048%5Bm%5E3%5D%5C%5Cmassball%3D0.01968%5Bkg%5D%5C%5C%5C%5C)
The buoyancy force acting on the balloon is:
![Fb=densityair*gravity*volumeball\\Fb=1.23[kg/m^3]*9.81[m/s^2]*0.048[m^3]\\Fb=0.579[N]](https://tex.z-dn.net/?f=Fb%3Ddensityair%2Agravity%2Avolumeball%5C%5CFb%3D1.23%5Bkg%2Fm%5E3%5D%2A9.81%5Bm%2Fs%5E2%5D%2A0.048%5Bm%5E3%5D%5C%5CFb%3D0.579%5BN%5D)
Now we need to make a free body diagram where we can see the forces that are acting over the balloon and determinate the acceleration.
In the attached image we can see the free body diagram and the equation deducted by Newton's second law
Answer:
C is the answer
Explanation:
Earth is the third planet from the sun
you are cheating on your test, I know
The characteristics of thermal expansion allow finding that the response for a material without thermal expansion is
- The length variation is zero
- In the graph the line is horizontal so there is no change in length with temperature
Thermal expansion is the macroscopic sum of the changes in the length of the bonds when the energy (temperature) changes, it can be written
ΔL = α L₀ ΔT
Where ΔL is the change in length, α the coefficient of linear expansion, L₀ the initial length and ΔT the change in body temperature
In this case, a material is being designed that the thermal expansion is very small, for this the material must be made up of several compounds where some of them present a contraction with temperature, some examples: water at low temperature, liquefied gases , ceramic tile, quartz, etc.
The thermal expansion measurement processes control the body temperature and measure the change in length, in this case the change in length must be zero, in the attachment we can see a graph of a composite material with these characteristics, an example of this type of material is Invar an alloy of nickel and iron α = 3.7 10⁻⁶ ºC⁻¹
In conclusion, using the characteristics of thermal expansion we can find that the response of material without thermal expansion is
- The length variation is zero
- In the graph the line is horizontal so there is no change in length with temperature
Learn more here: brainly.com/question/18717902