I say around 40% - 60%
https://www.dmv.ca.gov/portal/dmv/detail/teenweb/more_btn6/traffic/traffic
http://www.teendriversource.org/stats/support_teens/detail/57
http://www.rmiia.org/auto/teens/Teen_Driving_Statistics.asp
(I just corrected the question. Sorry if it is still incorrect.)
OMG ITS B ITS B I HOPE I HELPED U
Answer:
Half: 6 cm^2 Whole: 12 cm^2
Explanation:
First, we know that the edges of the cube are 2 cm long. So there are 6 faces on a cube. We do 2x6=12 cm^2 as our total surface area. Then it asks for each half. So you would divide it by 2 and get 6 cm^2 as your half.
The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.