The energy of 393 kJ is released as heat. Then, the container will experience an increase of temperature and, given that it is sealed, also an increase of pressure.
The increase of temperature results from the heat developed during the reaction.
The increase of pressure results from the fact that that the solid carbon will become gaseuos carbon dioxide. This gas will occupy a larger volume than the solid carbon and also this elevation of the temperature will make the pressure of the gas inside the container increase.
Answer;
The total pressure is 1.107 atm.
Explanation;
The total pressure is the sum of the pressures of the three gases in the flask
Pressure (total) = 0.215 atm + 0.066 atm + 0.826 atm = 1.107 atm
= 1.107 atm.
At 12 mph, how long does it take to go 13.1 miles?
We know that distance = rate * time
So we know that 13.1 = 12 * time
We can now see that time = 13.1/12 = 1.092 (hours)
That's approximately 1 hour and .092*60=5.52 minutes.
Answer:
The molarity of the formed CaBr2 solution is 0.48 M
Explanation:
Step 1: Data given
Number of moles CaBr2 = 0.72 moles
Volume of water = 1.50 L
Step 2: Calculate the molarity of the solution
Molarity of CaBr2 solution = moles CaBr2 / volume water
Molarity of CaBr2 solution = 0.72 moles / 1.50 L
Molarity of CaBr2 solution = 0.48 mol / = 0.48 M
The molarity of the formed CaBr2 solution is 0.48 M
Answer:
904.014 j/kgk
Explanation:
Mass of metal = 45g
Temperature of metal = 85.6°
Mass of water = 150
Temperature of water = 24.6
Final temperature of system = 28.3
Heat lost by metal = Heat gained by water
m1 * c1 * dt = m2 * c2 * dt
Q = quantity of heat
Q = m*c*dt
dt = change in temperature
dt of water = 28.3 - 24.6 = 3.7
dt of metal = 85.6 - 28.3 = 57.3
Specific heat capacity of water, c = 4200
(45 * 10^-3) * c * 57.3 = (150 * 10^-3) * 4200 * 3.7
2.5785c1 = 2331
c1 = 2331 / 2.5785
= 904.01396
= 904.014 j/kgk