Lemons is the most acid of these 3 fruits. It is high in citric acid.
Answer:
Explanation:
Potential energy is converted into kinetic energy. I am 100% positive.
Answer:
<u></u>
Explanation:
The lowering of the freezing point of a solvent is a colligative property ruled by the formula:
Where:
- ΔTf is the lowering of the freezing point
- Kf is the molal freezing constant of the solvent: 1.86 °C/m
- m is the molality of the solution
- i is the van't Hoff factor: the number of particles (ions) per unit of ionic compound.
<u />
<u>a) molality, m</u>
- m = number of moles of solute/ kg of solvent
- number of moles of CaI₂ = mass in grams/ molar mass
- number of moles of CaI₂ = 25.00g / 293.887 g/mol = 0.0850667mol
- m = 0.0850667mol/1.25 kg = 0.068053m
<u>b) i</u>
- Each unit of CaI₂, ideally, dissociates into 1 Ca⁺ ion and 2 I⁻ ions. Thus, i = 1 + 2 = 3
<u />
<u>c) Freezing point lowering</u>
- ΔTf = 1.86 °C/m × 0.068053m × 3 = 0.3797ºC ≈ 0.380ºC
<h2>I have problems to upload the full answer in here, so I attach a pdf file with the whole answer.</h2>
No it is affected by temperatures .
The balanced chemical reaction is written as:
<span>4C(s) + S8(s) → 4CS2(l)
We are given the amount of carbon and sulfur to be used in the reaction. We need to determine first the limiting reactant to be able to solve this correctly.
</span>7.70 g C ( 1 mol / 12.01 g) =0.64 mol C
19.7 g S8 ( 1 mol / 256.48 g) = 0.08 mol S8
The limiting reactant would be S8. We use this amount to calculate.
0.08 mol S8 ( 4 mol CS2 / 1 mol S8 ) ( 256.48 g / 1 mol ) = 78.8 g CS2