Answer:
2.15
Explanation:
For this question, we have to remember the <u>pH formula</u>:
![pH~=~-Log[H_3O^+]](https://tex.z-dn.net/?f=pH~%3D~-Log%5BH_3O%5E%2B%5D)
By definition, the pH value is calculated when we do the -Log of the concentration of the <u>hydronium ions</u> (
). So, the next step is the calculation of the <u>concentration</u> of the hydronium ions. For this, we have to use the <u>molarity formula</u>:

We already know the number of moles (0.0231 moles) and the volume (3.33 L). So, we can plug the values into the molarity formula:

With this value, now we can calculate the pH value:
![pH~=~-Log[0.00693~M]~=~2.15](https://tex.z-dn.net/?f=pH~%3D~-Log%5B0.00693~M%5D~%3D~2.15)
<u>The pH would be 2.15</u>
I hope it helps!
<span>c] The golfer sent the golf ball flying toward the cup to score a hole in one.</span>
Answer: I think that you have to find it in your lesson
Explanation:
Answer:
28.16 g/mol
Explanation:
From Graham's law;
Let the rate of diffusion of gas X be 1.25
Let the rate of diffusion of CO2 be 1
Molecular mass of gas X= M
Molecular mass of CO2 = 44g/mol
1.25/1=√44/M
(1.25/1)^2 = 44/M
1.5625 = 44/M
M= 44/1.5625
M= 28.16 g/mol